Klin Monbl Augenheilkd 2012; 229(2): 135-142
DOI: 10.1055/s-0031-1299241
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Stellenwert der optischen Kohärenztomografie (OCT) für die Glaukomdiagnostik

Optical Coherence Tomography (OCT) in Glaucoma Diagnostics
E. M. Hoffmann
1   Augenklinik und Poliklinik, Universitätsmedizin Mainz
› Author Affiliations
Further Information

Publication History

03 December 2011

19 January 2012

Publication Date:
14 February 2012 (online)

Zusammenfassung

Die optische Kohärenztomografie (OCT) ist ein Untersuchungsverfahren, welches auf Licht geringer Kohärenzlänge basiert. Mithilfe eines Interferometers wird die OCT zur Entfernungsmessung streuender Materialien eingesetzt. Das Untersuchungsobjekt wird punktweise abgetastet. Die Time-Domain(TD)-Technologie hat im Gegensatz zur neueren Spectral-Domain (SD) oder auch Fourier-Domain(FD)-OCT eine geringere Auflösung und wurde ursprünglich für die Makuladiagnostik entwickelt. Dennoch gibt es viele Untersuchungen, die sich mit der Diagnosekraft der (TD)-OCT befasst haben und hier recht gute Ergebnisse im Vergleich mit anderen laserbasierten Diagnoseverfahren aufweisen. Die Vorteile der (SD)-OCT sind neben der besseren Auflösung eine extrem schnelle Bildaufnahme, die 3-D-Darstellung von Sehnerv und retinalen Nervenfasern sowie die Möglichkeit der gesonderten Darstellung einzelner Schichten der Netzhaut (Segmentationsalgorithmus, je nach Hersteller). Die Frühdiagnose scheint deutlich verbessert mit der (FD)-OCT im Vergleich zur (TD)-OCT. Mithilfe der (SD)-OCT lassen sich der Sehnerv und die Retina also genauer darstellen und vermessen. Wie gut sich dieses Verfahren zur Glaukomdiagnostik und Verlaufskontrolle eignet, wird derzeit in zahlreichen Studien evaluiert.

Abstract

Optical coherence tomography (OCT) provides high resolution objective and quantitative measurements of the optic disc parameters and RNFL thickness and has been widely used for detection of glaucomatous damage and disease progression. The recent introduction of spectral domain (SD)-OCT technology, also known as Fourier domain (FD)-OCT offers significant advantages over the previous time domain (TD)-OCT, allowing 3 D imaging of the retina and optic disc with ultra-high acquisition speed and ultra-high resolution. The higher resolution of (SD)-OCT offers enhanced visualisation and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

 
  • Literatur

  • 1 Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80 (05) 389-393
  • 2 WHO. In focus: Glaucoma is the second leading cause of blindness globally. Bull World Health Organ 2004; 887
  • 3 Harasymowycz P, Kamdeu Fansi A, Papamatheakis D. Screening for primary open-angle glaucoma in the developed world: are we there yet?. Can J Ophthalmol 2005; 40 (04) 477-486
  • 4 Kooner KS et al. Risk factors for progression to blindness in high tension primary open angle glaucoma: Comparison of blind and nonblind subjects. Clin Ophthalmol 2008; 2 (04) 757-762
  • 5 Quigley HA. Glaucoma. Lancet 2011; 377 (9774) 1367-1377
  • 6 Huang D et al. Optical coherence tomography. Science 1991; 254 (5035) 1178-1181
  • 7 Cheng CS et al. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography. Clin Experiment Ophthalmol 2010; 39 (03) 215-221
  • 8 Smith M et al. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. Br J Ophthalmol 2007; 91 (12) 1686-1690
  • 9 van Velthoven ME et al. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 2007; 26 (01) 57-77
  • 10 Schulze A, Lamparter J, Hoffmann EM. New options of high resolution optical coherence tomography in glaucoma diagnostic. Ophthalmologe 2009; 106 (08) 702-704, 706-708
  • 11 Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 2009; 51 (02) 938-945
  • 12 Moreno-Montanes J et al. Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 2010; 51 (01) 335-343
  • 13 Zhang Y, Wu LL, Yang YF. Potential of stratus optical coherence tomography for detecting early glaucoma in perimetrically normal eyes of open-angle glaucoma patients with unilateral visual field loss. J Glaucoma 2010; 19 (01) 61-65
  • 14 Lee EJ et al. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci 2009; 50 (02) 662-668
  • 15 Leung CK et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2009; 51 (01) 217-222
  • 16 Medeiros FA et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 2009; 50 (12) 5741-5748
  • 17 Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010; 117 (04) 738-746
  • 18 Gonzalez-Garcia AO et al. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol 2009; 147 (06) 1067-1074, 1074 e1
  • 19 Wang X et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. Br J Ophthalmol 2010; 95 (04) 509-513
  • 20 Schulze A et al. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2011; 249 (07) 1039-1045
  • 21 Garas A, Vargha P, Hollo G. Comparison of diagnostic accuracy of the RTVue Fourier-domain OCT and the GDx-VCC/ECC polarimeter to detect glaucoma. Eur J Ophthalmol 2011; 22 (01) 45-54
  • 22 Schulze ALJ, Pfeiffer N, Berisha F et al. Comparison of Fourier-Domain Optical Coherence Tomography, Confocal Scanning Laser Ophthalmoscopy and Scanning Laser Polarimetry for gGaucoma Detection. Br J Ophthalmol 2012; submitted.
  • 23 Leite MT et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol 2010; 151 (01) 85-92 e1
  • 24 Leite MT et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011; 118 (07) 1334-1339
  • 25 Park SB et al. Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009; 127 (12) 1603-1609
  • 26 Vizzeri G et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 2009; 93 (06) 775-781
  • 27 Arthur SN et al. Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT. Eye 2010; 25 (02) 192-200
  • 28 Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52 (06) 3338-3344
  • 29 Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 2010; 20 (08) 470-476
  • 30 Nukada M et al. Detection of localized retinal nerve fiber layer defects in glaucoma using enhanced spectral-domain optical coherence tomography. Ophthalmology 2011; 118 (06) 1038-1048
  • 31 Hoesl LM et al. Glaucoma Diagnostic Performance of GDxVCC and Spectralis OCT on Eyes With Atypical Retardation Pattern. J Glaucoma 2011; epub
  • 32 Giani A et al. Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol 2010; 150 (06) 815-824