Planta Med 2010; 76(4): 339-344
DOI: 10.1055/s-0029-1186144
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

The Effects of the Diterpenes Isolated from the Brazilian Brown Algae Dictyota pfaffii and Dictyota menstrualis against the Herpes Simplex Type-1 Replicative Cycle

Juliana L. Abrantes1 , Jussara Barbosa2 , Diana Cavalcanti2 , Renato C. Pereira2 , Carlos L. Frederico Fontes1 , Valeria L. Teixeira2 , Thiago L. Moreno Souza4 [*] , Izabel C. P. Paixão3 [*]
  • 1Laboratório de Estrutura e Regulação de Proteínas, Programa de Pós-Graduação em Química Biológica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
  • 2Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
  • 3Laboratório de Virologia Molecular, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Neuroimunologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
  • 4Laboratório de Vírus Respiratórios e do Sarampo, Laboratório de Referência para Influenza e Viroses Exantemáticas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
Further Information

Publication History

received April 10, 2009 revised August 9, 2009

accepted August 19, 2009

Publication Date:
17 September 2009 (online)

Abstract

We describe in this paper that the diterpenes 8,10,18-trihydroxy-2,6-dolabelladiene (1) and (6R)-6-hydroxydichotoma-4,14-diene-1,17-dial (2), isolated from the marine algae Dictyota pfaffii and D. menstrualis, respectively, inhibited HSV-1 infection in Vero cells. We initially observed that compounds 1 and 2 inhibited HSV-1 replication in a dose-dependent manner, resulting in EC50 values of 5.10 and 5.90 µM, respectively, for a multiplicity of infection (MOI) of 5. Moreover, the concentration required to inhibit HSV-1 replication was not cytotoxic, resulting in good selective index (SI) values. Next, we found that compound 1 sustained its anti-herpetic activity even when added to HSV-1-infected cells at 6 h after infection, while compound 2 sustained its activity for up to 3 h after infection, suggesting that these compounds inhibit initial events during HSV-1 replication. We also observed that both compounds were incapable of impairing HSV-1 adsorption and penetration. In addition, the tested molecules could decrease the contents of some HSV-1 early proteins, such as UL-8, RL-1, UL-12, UL-30 and UL-9. Our results suggest that the structures of compounds 1 and 2, Brazilian brown algae diterpenes, might be promising for future antiviral design.

References

  • 1 Heldwein E E, Krummenacher C. Entry of herpesviruses into mammalian cells.  Cell Mol Life Sci. 2008;  65 1-16
  • 2 Roizman B, Sears A E. Fields virology, 3rd edition. Philadelphia; Lippincott-Raven Publisher 1996: 2231-2295
  • 3 Spear P G. Herpes simplex virus: receptors and ligands for cell entry.  Cell Microbiol. 2004;  6 401-410
  • 4 McKnight J L, Pellett P E, Jenkins F J, Roizman B. Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genes.  J Virol. 1987;  61 992-1001
  • 5 Whitley R. New approaches to the therapy of HSV infections.  Herpes. 2006;  13 53-55
  • 6 Abdel-Haq N, Chearskul P, Al-Tatari H, Asmar B. New antiviral agents.  Indian J Pediatr. 2006;  73 313-321
  • 7 Waggoner-Fountain L A, Grossman L B. Herpes simplex virus.  Pediatr Rev. 2004;  25 86-93
  • 8 Lisco A, Vanpouille C, Margolis M. Coinfecting viruses as determinants of HIV disease.  Curr HIV/AIDS Rep. 2009;  6 5-12
  • 9 De Clercq E. Antiviral drugs in current use.  J Clin Virol. 2004;  30 115-133
  • 10 Eizuru Y. Development of new antivirals for herpesviruses.  Antiviral Chem Chemother. 2003;  14 299-308
  • 11 Newman D J, Cragg G M, Snader K M. Natural products as sources of new drugs over the period 1981–2002.  J Nat Prod. 2003;  66 1022-1037
  • 12 Khan M T, Ather A, Thompson K D, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses.  Antiviral Res. 2005;  67 107-119
  • 13 Bastow K F. New acridone inhibitors of human herpes virus replication.  Curr Drug Targets Infect Disord. 2004;  4 323-330
  • 14 Souza T M, Abrantes J L, de A Epifanio R, Leite Fontes C F, Frugulhetti I C. The alkaloid from 4methylaaptamine isolated from the sponge Aaptos aaptos impairs herpes simplex type 1 penetration and immediate-early protein synthesis.  Planta Med. 2007;  73 200-205
  • 15 Barbosa J P, Pereira R C, Abrantes J L, Cirne-Santos C C, Rebello M A, Frugulhetti I C, Teixeira V L. In vitro antiviral diterpenes from the Brazilian brown alga Dictyota pfaffii.  Planta Med. 2004;  70 856-860
  • 16 Barbosa J P, Teixeira V L, Villaça R, Pereira R C, Abrantes J L, Frugulhetti I C. A dolabellane diterpene from the Brazilian brown alga Dictyota pfaffii.  Biochem Syst Ecol. 2003;  31 1451-1453
  • 17 De Souza Pereira H, Leão-Ferreira L R, Moussatche N, Teixeira V L, Cavalcanti D N, Da Costa L J, Diaz R, Frugulhetti I C. Effects of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis on HIV-1 reverse transcriptase.  Planta Med. 2005;  71 1019-1024
  • 18 Pereira H S, Leão-Ferreira L R, Moussatche N, Teixeira V L, Cavalcanti D N, Costa L J, Diaz R, Frugulhetti I C. Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1).  Antiviral Res. 2004;  64 69-76
  • 19 Cirne-Santos C C, Teixeira V L, Castello-Branco L R, Frugulhetti I C, Bou-Habib D C. Inhibition of HIV-1 replication in human primary cells by a dolabellane diterpene isolated from the Brazilian algae Dictyota pfaffii.  Planta Med. 2006;  72 295-299
  • 20 Cirne-Santos C C, Souza T M, Teixeira V L, Fontes C F, Rebello M, Castello-Branco L R, Abreu C M, Tanuri A, Frugulhetti I C, Bou-Habib D C. The dolabellane diterpene dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme.  Antiviral Res. 2008;  77 64-71
  • 21 Teixeira V L, Cavalcanti D N, Pereira R C. Chemotaxonomic study of the diterpenes from the brown algae Dictyota menstrualis.  Biochem Syst Ecol. 2001;  29 313-316
  • 22 Esquenazi D, Wigg M D, Miranda M M, Rodrigues H M, Tostes J B, Rozental S, Da Silva A J, Alviano C S. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract.  Res Microbiol. 2002;  153 647-652
  • 23 Kuo Y C, Chen C C, Tsai W J, Ho Y H. Regulation of herpes simplex virus type 1 replication in Vero cells by Psychotria serpens: relationship to gene expression, DNA replication, and protein synthesis.  Antiviral Res. 2001;  51 95-109
  • 24 Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.  J Immunol Methods. 1986;  89 271-277
  • 25 De Logu A, Loy G, Pellerano M L, Bonsignore L, Schivo M L. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil.  Antiviral Res. 2000;  48 177-185
  • 26 Gong Y, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, Holan G, Raff J, Sacks S. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication.  Antiviral Res. 2002;  55 319-329
  • 27 Souza T M, De Souza M C, Ferreira V F, Canuto C V, Marques I P, Fontes C F, Frugulhetti I C. The chloroxoquinolinic derivative 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid inhibits HSV-1 adsorption by impairing its adsorption on HVEM.  Arch Virol. 2007;  152 1417-1424
  • 28 De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection.  Med Res Rev. 2000;  20 323-349
  • 29 De Ines C, Reina M, Gavin J A, Gonzalez-Coloma A. In vitro cytotoxicity of norditerpenoid alkaloids.  Z Naturforsch. 2006;  61 1-8
  • 30 Bender F C, Whitbeck J C, Lou H, Cohen G H, Eisenberg R J. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry.  J Virol. 2005;  79 11588-11597
  • 31 Virusys Corporation .The source of virology related products and services. Available at. www.virusys.com/HSV-1/HSV-1_ORFS/hsv-1_orfs.html Accessed March 23, 2009
  • 32 De Clercq E, Naesens L, De Bolle L, Schols D, Zhang Y, Neyts J. Antiviral agents active against human herpesvirus HHV-6, HHV-7 and HHV-8.  Med Virol. 2001;  11 381-395
  • 33 Smith R W, Malik P, Clements J B. The herpes simplex virus ICP27 protein: a multifunctional post-transcriptional regulator of gene expression.  Biochem Soc Trans. 2005;  33 499-501
  • 34 Kuo Y C, Lin L C, Tsai W J, Chou C J, Kung S H, Ho Y H. Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in Vero cells by regulation of viral macromolecular synthesis.  Antimicrob Agents Chemother. 2002;  9 2854-2864

1 Both authors contributed equally to this paper.

BSc, MSc Juliana Lourenço Abrantes

Instituto de Bioquímica Médica
Cidade Universitária
Ilha do Fundão
Centro de Ciências da Saúde (CCS)

Bloco H, segundo andar, sala 26

Rua Cesar Pernetta 400

CEP 21941–590, Rio de Janeiro

Brasil

Phone: + 55 21 25 62 67 84

Fax: + 55 21 25 62 67 84

Email: abrantes@bioqmed.ufrj.br

    >