Planta Med 2024; 90(05): 368-379
DOI: 10.1055/a-2257-9194
Biological and Pharmacological Activity
Reviews

Research Progress of Natural Product Photosensitizers in Photodynamic Therapy

Xiaoxia Zhou
1   Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
,
Xufang Ying
2   Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
,
Linjie Wu
2   Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
,
Liqin Liu
1   Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
,
Ying Wang
1   Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
,
Ying He
1   Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
,
Min Han
2   Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
3   Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
4   Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
› Author Affiliations
This work was supported by the National Key Research and Development Program of China (No. 2022YFE0107800).

Abstract

Photodynamic therapy is a noninvasive cancer treatment that utilizes photosensitizers to generate reactive oxygen species upon light exposure, leading to tumor cell apoptosis. Although photosensitizers have shown efficacy in clinical practice, they are associated with certain disadvantages, such as a certain degree of toxicity and limited availability. Recent studies have shown that natural product photosensitizers offer promising options due to their low toxicity and potential therapeutic effects. In this review, we provide a summary and evaluation of the current clinical photosensitizers that are commonly used and delve into the anticancer potential of natural product photosensitizers like psoralens, quinonoids, chlorophyll derivatives, curcumin, chrysophanol, doxorubicin, tetracyclines, Leguminosae extracts, and Lonicera japonica extract. The emphasis is on their phototoxicity, pharmacological benefits, and effectiveness against different types of diseases. Novel and more effective natural product photosensitizers for future clinical application are yet to be explored in further research. In conclusion, natural product photosensitizers have potential in photodynamic therapy and represent a promising area of research for cancer treatment.



Publication History

Received: 27 April 2023

Accepted after revision: 15 January 2024

Article published online:
29 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kato H. [History of photodynamic therapy–past, present and future]. Gan To Kagaku Ryoho 1996; 23: 8-15
  • 2 Kelly JF, Snell AE, Berenbauai MC. Photodynamic destruction of human bladder carcinoma. Br J Cancer 1975; 31: 237-244
  • 3 Pogue BW, Elliott JT, Kanick SC, Davis SC, Samkoe KS, Maytin EV, Pereira SP, Hasan T. Revisiting photodynamic therapy dosimetry: Reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 2016; 61: R57-R89
  • 4 Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-Aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 2019; 141: 595-607
  • 5 Nakano Y, Kitagawa T, Osada Y, Tanaka T, Nishizawa S, Yamamoto J. 5-Aminolevulinic acid suppresses prostaglandin E2 production by murine macrophages and enhances macrophage cytotoxicity against glioma. World Neurosurg 2019; 127: e669-e676
  • 6 Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50: 399-419
  • 7 Fang CY, Chen PY, Ho DC, Tsai LL, Hsieh PL, Lu MY, Yu CC, Yu CH. miR-145 mediates the anti-cancer stemness effect of photodynamic therapy with 5-aminolevulinic acid (ALA) in oral cancer cells. J Formos Med Assoc 2018; 117: 738-742
  • 8 Wang YY, Chen YK, Hu CS, Xiao LY, Huang WL, Chi TC, Cheng KH, Wang YM, Yuan SF. MAL-PDT inhibits oral precancerous cells and lesions via autophagic cell death. Oral Dis 2019; 25: 758-771
  • 9 Qi F, Sun Y, Lv M, Qin F, Cao W, Bi L. Effects of palmatine hydrochloride mediated photodynamic therapy on oral squamous cell carcinoma. Photochem Photobiol Sci 2018; 17: 375-385
  • 10 Aniogo EC, Plackal Adimuriyil George B, Abrahamse H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int 2019; 19: 91
  • 11 Ahn TG, Jung JM, Lee EJ, Choi JH. Effects of cisplatin on photosensitizer-mediated photodynamic therapy in breast tumor-bearing nude mice. Obstet Gynecol Sci 2019; 62: 112-119
  • 12 Huang HC, Mallidi S, Liu J, Chiang CT, Mai Z, Goldschmidt R, Ebrahim-Zadeh N, Rizvi I, Hasan T. Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer. Cancer Res 2016; 76: 1066-1077
  • 13 DeWitt JM, Sandrasegaran K, OʼNeil B, House MG, Zyromski NJ, Sehdev A, Perkins SM, Flynn J, McCranor L, Shahda S. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest Endosc 2019; 89: 390-398
  • 14 Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61: 250-281
  • 15 Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J Biophotonics 2016; 9: 1314-1325
  • 16 Gong H, Chao Y, Xiang J, Han X, Song G, Feng L, Liu J, Yang G, Chen Q, Liu Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett 2016; 16: 2512-2521
  • 17 Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 2015; 35: 615-621
  • 18 Thomas E, Colombeau L, Gries M, Peterlini T, Mathieu C, Thomas N, Boura C, Frochot C, Vanderesse R, Lux F, Barberi-Heyob M, Tillement O. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int J Nanomedicine 2017; 12: 7075-7088
  • 19 Rosin FC, Barcessat AR, Borges GG, Correa L. Effect of 5-ALA-mediated photodynamic therapy on mast cell and microvessels densities present in oral premalignant lesions induced in rats. J Photochem Photobiol B 2015; 153: 429-434
  • 20 Beltran Hernandez I, Yu Y, Ossendorp F, Korbelik M, Oliveira S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: clinical recommendations. J Clin Med 2020; 9: 333
  • 21 Kawczyk-Krupka A, Bugaj AM, Latos W, Zaremba K, Wawrzyniec K, Sieron A. Photodynamic therapy in colorectal cancer treatment: The state of the art in clinical trials. Photodiagnosis Photodyn Ther 2015; 12: 545-553
  • 22 Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 2014; 7: 145-163
  • 23 Li Z, Wang C, Cheng L, Gong H, Yin S, Gong Q, Li Y, Liu Z. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 2013; 34: 9160-9170
  • 24 Felsher DW. Cancer revoked: Oncogenes as therapeutic targets. Nat Rev Cancer 2003; 3: 375-380
  • 25 Rajendran M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn Ther 2016; 13: 175-187
  • 26 Mroz P, Hamblin MR. The immunosuppressive side of PDT. Photochem Photobiol Sci 2011; 10: 751-758
  • 27 Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, Lorente C, Nunez SC, Ribeiro MS, Thomas AH, Vignoni M, Yoshimura TM. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochem Photobiol 2017; 93: 912-919
  • 28 Lim CK, Heo J, Shin S, Jeong K, Seo YH, Jang WD, Park CR, Park SY, Kim S, Kwon IC. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett 2013; 334: 176-187
  • 29 Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, Kotlinska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018; 106: 1098-1107
  • 30 Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile nanoplatforms with enhanced photodynamic therapy: Designs and applications. Theranostics 2020; 10: 7287-7318
  • 31 Martins TD, Lima E, Boto RE, Ferreira D, Fernandes JR, Almeida P, Ferreira LFV, Silva AM, Reis LV. Red and near-infrared absorbing dicyanomethylenesquaraine cyanine dyes: Photophysicochemical properties and anti-tumor photosensitizing effects. Materials (Basel) 2020; 13: 2083
  • 32 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules 2018; 23: 1704
  • 33 Montaseri H, Kruger CA, Abrahamse H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics 2021; 13: 296
  • 34 Kazantzis KT, Koutsonikoli K, Mavroidi B, Zachariadis M, Alexiou P, Pelecanou M, Politopoulos K, Alexandratou E, Sagnou M. Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and in vitro studies with prostate cancer cells. Photochem Photobiol Sci 2020; 19: 193-206
  • 35 Tsukagoshi S. [Porfimer sodium (Photofrin-II)]. Gan To Kagaku Ryoho 1995; 22: 1271-1278
  • 36 Menezes PFC, Bagnato VS, Sibata CH, Imasato H, Perussi JR. Phototocytotoxicity of photogem submitted to photobleaching. Proc. SPIE 5689, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIV. https://doi.org/10.1117/12.588794. Date last accessed: February 22; 2024
  • 37 Babbar AK, Singh AK, Goel HC, Chauhan UPS, Sharma RK. Evaluation of Tc-99 m-labeled Photosan-3, a hematoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. Nucl Med Biol 2000; 27: 419-426
  • 38 Lin H, Shen Y, Chen D, Lin L, Li B, Xie S. Determination of singlet oxygen quantum yield of HiPorfin using Singlet Oxygen Sensor Green. Proc. SPIE 2010, 7845, Optics in Health Care and Biomedical Optics IV. https://doi.org/10.1117/12.870108. Date last accessed: February 22; 2024
  • 39 Sun M, Zhou C, Zeng H, Puebla-Osorio N, Damiani E, Chen J, Wang H, Li G, Yin F, Shan L, Zuo D, Liao Y, Wang Z, Zheng L, Hua Y, Cai Z. Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem Photobiol 2015; 91: 533-544
  • 40 Zeng R, Liu C, Li L, Cai X, Chen R, Li Z. Clinical efficacy of HiPorfin photodynamic therapy for advanced obstructive esophageal cancer. Technol Cancer Res Treat 2020; 19: 1533033820930335
  • 41 Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: Inception to application in breast cancer. Breast 2017; 31: 105-113
  • 42 Hosokawa S, Takahashi G, Sugiyama KI, Takebayashi S, Okamura J, Takizawa Y, Mineta H. Porfimer sodium-mediated photodynamic therapy in patients with head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2020; 29: 101627
  • 43 Tao J, Chen W, Su Y. Method for treating port wine stains. US Patent 2012029045A1, 2012
  • 44 Jeffes EWB. Levulan: The first approved topical photosensitizer for the treatment of actinic keratosis. J Dermatolog Treat 2002; 13: S19-S23
  • 45 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F. Reulen HJ. ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7: 392-401
  • 46 Kriegmair M, Baumgartner R, Knuchel R, Stepp H, Hofstadter F, Hostetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 1996; 155: 105-109
  • 47 Gossner L, Stolte M, Sroka R, Rick K, May A, Hahn EG, Ell C. Photodynamic ablation of high-grade dysplasia and early cancer in Barrettʼs esophagus by means of 5-aminolevulinic acid. Gastroenterology 1998; 114: 448-455
  • 48 Hillemanns P, Untch M, Prove F, Baumgartner R, Hillemanns M, Korell M. Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid. Obstet Gynecol 1999; 93: 71-74
  • 49 Morton CA. Methyl aminolevulinate: Actinic keratoses and Bowenʼs disease. Dermatol Clin 2007; 25: 81-87
  • 50 Rhodes LE, de Rie M, Enstrom Y, Groves R, Morken T, Goulden V, Wong GAE, Grob JJ, Varma S, Wolf P. Photodynamic therapy using topical methyl aminolevulinate vs. surgery for nodular basal cell carcinoma: results of a multicenter randomized prospective trial. Arch Dermatol 2004; 140: 17-23
  • 51 Szeimies RM, Karrer S, Radakovic-Fijan S, Tanew A, Calzavara-Pinton PG, Zane C, Sidoroff A, Hempel M, Ulrich J, Proebstle T, Meffert H, Mulder M, Salomon D, Dittmar HC, Bauer JW, Kernland K, Braathen L. Photodynamic therapy using topical methyl 5-aminolevulinate compared with cryotherapy for actinic keratosis: A prospective, randomized study. J Am Acad Dermatol 2002; 47: 258-262
  • 52 Lapini A, Minervini A, Masala A, Schips L, Pycha A, Cindolo L, Giannella R, Martini T, Vittori G, Zani D, Bellomo F, Cunico SC. A comparison of hexaminolevulinate (Hexvix) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: Results of the HeRo observational study. Surg Endosc 2012; 26: 3634-3641
  • 53 Senge MO, Brandt JC. Temoporfin (Foscan, 5, 10, 15, 20-tetra(m-hydroxyphenyl)chlorin)–a second-generation photosensitizer. Photochem Photobiol 2011; 87: 1240-1296
  • 54 Friedberg JS, Mick R, Stevenson J, Metz J, Zhu T, Buyske J, Sterman DH, Pass HI, Glatstein E, Hahn SM. A phase I study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma. Ann Thorac Surg 2003; 75: 952-959
  • 55 Istomin YP, Lapzevich TP, Chalau VN, Shliakhtsin SV, Trukhachova TV. Photodynamic therapy of cervical intraepithelial neoplasia grades II and III with Photolon. Photodiagnosis Photodyn Ther 2010; 7: 144-151
  • 56 Wang S, Bromley E, Xu L, Chen JC, Keltner L. Talaporfin sodium. Expert Opin Pharmacother 2010; 11: 133-140
  • 57 Akter S, Saito S, Inai M, Honda N, Hazama H, Nishikawa T, Kaneda Y, Awazu K. Efficient photodynamic therapy against drug-resistant prostate cancer using replication-deficient virus particles and talaporfin sodium. Laser Med Sci 2021; 36: 743-750
  • 58 Nonaka T, Nanashima A, Nonaka M, Uehara M, Isomoto H, Nonaka Y, Nagayasu T. Advantages of laserphyrin compared with photofrin in photodynamic therapy for bile duct carcinoma. J Hepatobiliary Pancreat Sci 2011; 18: 592-600
  • 59 Nakamura T, Oinuma T. Usefulness of photodynamic diagnosis and therapy using talaporfin sodium for an advanced-aged patient with inoperable gastric cancer (a secondary publication). Laser Ther 2014; 23: 201-210
  • 60 Ikeda H, Ohba S, Egashira K, Asahina I. The effect of photodynamic therapy with talaporfin sodium, a second-generation photosensitizer, on oral squamous cell carcinoma: A series of eight cases. Photodiagnosis Photodyn Ther 2018; 21: 176-180
  • 61 Iacono P, Da Pozzo S, Varano M, Parravano M. Photodynamic therapy with verteporfin for chronic central serous chorioretinopathy: A review of data and efficacy. Pharmaceuticals (Basel) 2020; 13: 349
  • 62 van Dijk EHC, van Rijssen TJ, Subhi Y, Boon CJF. Photodynamic therapy for chorioretinal diseases: A practical approach. Ophthalmol Ther 2020; 9: 329-342
  • 63 Mae Y, Kanda T, Sugihara T, Takata T, Kinoshita H, Sakaguchi T, Hasegawa T, Tarumoto R, Edano M, Kurumi H, Ikebuchi Y, Kawaguchi K, Isomoto H. Verteporfin-photodynamic therapy is effective on gastric cancer cells. Mol Clin Oncol 2020; 13: 10
  • 64 No authors Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin – one-year results of 2 randomized clinical trials – TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Arch Ophthalmol 1999; 117: 1329-1345
  • 65 Shevchik SA, Loshchenov MV, Meerovich GA, Budzinskaia MV, Ermakova NA, Kharnas SS, Loshchenov VB. [A device for fluorescence diagnosis and photodynamic therapy of eye diseases, by using photosense]. Vestn Oftalmol 2005; 121: 26-28
  • 66 Vakulovskaya E, Kemov Y, Zalevsky I, Reshetnikov A, Umnova L, Vorozhcsov G. Photodynamic therapy and fluorescent diagnostics of skin cancer with radochlorine and photosense: comparing efficacy and toxicity. Proc. SPIE 2004, 5315, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIII. https://doi.org/10.1117/12.537787. Date last accessed: February 22; 2024
  • 67 Vakulovskaya EG, Shental VV, Kondratjeva TT. Photodynamic therapy and fluorescent diagnostics of head and neck tumors with photosense. Int J Cancer 2002; 262-262
  • 68 Vakoulovskaya E, Shental V, Oumnova L, Vorozhcsov G. Photodynamic therapy of breast cancer with photosense. Proc. SPIE 2003, 4952, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XII. https://doi.org/10.1117/12.479431. Date last accessed: February 22; 2024
  • 69 Urbanska K, Romanowska-Dixon B, Matuszak Z, Oszajca J, Nowak-Sliwinska P, Stochel G. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim Pol 2002; 49: 387-391
  • 70 Parker S. The use of diffuse laser photonic energy and indocyanine green photosensitiser as an adjunct to periodontal therapy. Br Dent J 2013; 215: 167-171
  • 71 Costa RA, Farah ME, Cardillo JA, Belfort R. Photodynamic therapy with indocyanine green for occult subfoveal choroidal neovascularization caused by age-related macular degeneration. Curr Eye Res 2001; 23: 271-275
  • 72 Tardivo JP, Del Giglio A, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RDF, Baptista MS. Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther 2005; 2: 175-191
  • 73 Cengel KA, Simone 2nd CB, Glatstein E. PDT: Whatʼs past is prologue. Cancer Res 2016; 76: 2497-2499
  • 74 Dougherty TJ, Kauffman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 1978; 38: 2628-2635
  • 75 Diamond I, McDonagh A, Wilson C, Granelli S, Nielsen S, Jaenicke R. Photodynamic therapy of malignant tumours. The Lancet 1972; 300: 1175-1177
  • 76 Berns MW, Rettenmaier M, McCoullough J, Coffey J, Wile A, Berman M, Disaia P, Weinstein G. Response of psoriasis to red laser light (630 nm) following systemic injection of hematoporphyrin derivative. Lasers Surg Med 1984; 4: 73-77
  • 77 Adimoolam MG, A V. Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy. J Mater Chem B 2017; 5: 9189-9196
  • 78 Zhu YX, Jia HR, Chen Z, Wu FG. Photosensitizer (PS)/Polyhedral Oligomeric Silsesquioxane (POSS)-crosslinked nanohybrids for enhanced imaging-guided photodynamic cancer therapy. Nanoscale 2017; 9: 12874-12884
  • 79 OʼConnor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85: 1053-1074
  • 80 Plonka J, Latocha M, Kusmierz D, Zielinska A. Expression of proapoptotic BAX and TP53 genes and antiapoptotic BCL-2 gene in MCF-7 and T-47D tumour cell cultures of the mammary gland after a photodynamic therapy with photolon. Adv Clin Exp Med 2015; 24: 37-46
  • 81 Copley L, van der Watt P, Wirtz KW, Parker MI, Leaner VD. Photolon, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. Int J Biochem Cell Biol 2008; 40: 227-235
  • 82 Chouikrat R, Seve A, Vanderesse R, Benachour H, Barberi-Heyob M, Richeter S, Raehm L, Durand JO, Verelst M, Frochot C. Non polymeric nanoparticles for photodynamic therapy applications: Recent developments. Curr Med Chem 2012; 19: 781-792
  • 83 Li X, Lee S, Yoon J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 2018; 47: 1174-1188
  • 84 Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2: 916-966
  • 85 Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473: 347-364
  • 86 Xiao QC, Wu J, Pang X, Jiang Y, Wang P, Leung AW, Gao LQ, Jiang S, Xu CS. Discovery and development of natural products and their derivatives as photosensitizers for photodynamic therapy. Curr Med Chem 2018; 25: 839-860
  • 87 Zhao JB, Cui Q, Wang LG, Wu SH, Yang YC. Irradiation sensitivity-enhancing effect of psoralens on S180 cell line. J Fourth Mil Med Univ 1998; 19: 627-629
  • 88 Carneiro Leite V, Ferreira Santos R, Chen Chen L, Andreu Guillo L. Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J Photochem Photobiol B 2004; 76: 49-53
  • 89 Plumas J, Drillat P, Jacob MC, Richard MJ, Favrot MC. [Extracorporeal photochemotherapy for treatment of clonal T cell proliferations]. Bull Cancer 2003; 90: 763-770
  • 90 Efferth T, Fabry U, Osieka R. Induction of apoptosis, depletion of glutathione, and DNA damage by extracorporeal photochemotherapy and psoralen with exposure to UV light in vitro . Anticancer Res 2001; 21: 2777-2783
  • 91 Yan XG, Zhou XY, Wu JZ. Study on the photosensitizing properties of the antitumor effect of psoralens. J Int Oncol 1999; 26: 83-85
  • 92 Zheng Y, Yin G, Le V, Zhang A, Chen S, Liang X, Liu J. Photodynamic-therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy. Int J Biol Sci 2016; 12: 120-132
  • 93 Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016; 8: 328ra327
  • 94 Majerník M, Jendželovský R, Babinčák M, Košuth J, Ševc J, Tonelli Gombalová Z, Jendželovská Z, Buríková M, Fedoročko P. Novel insights into the effect of hyperforin and photodynamic therapy with hypericin on chosen angiogenic factors in colorectal micro-tumors created on chorioallantoic membrane. Int J Mol Sci 2019; 20: 3004
  • 95 Kim H, Kim SW, Seok KH, Hwang CW, Ahn JC, Jin JO, Kang HW. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagnosis Photodyn Ther 2018; 24: 15-21
  • 96 Plenagl N, Duse L, Seitz BS, Goergen N, Pinnapireddy SR, Jedelska J, Brüßler J, Bakowsky U. Photodynamic therapy – hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv 2019; 26: 23-33
  • 97 Chen XM, Li HY, Qu T, Gao M, Xu XH. Inhibitory effects of CIK on breast cancer cells intensified by hypericin mediated photodynamic therapy. Herald Med 2021; 40: 1318-1324
  • 98 Hu J, Song J, Tang Z, Wei S, Chen L, Zhou R. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. Eur J Pharmacol 2021; 900: 174071
  • 99 Zhang XQ, Fang JY, Yao J, Chen MY, Song ZW, Xu LL, Zhao TJ. Mechanism of photodynamic therapy mediated by hypericin in inhibiting the proliferation of leukemia cell lines. Chin Pharm J 2018; 53: 967-974
  • 100 Chen HJ, Diao L, Zhang L, Liu HX, Li WQ, Huang XD, Zhang RL, Li GX. Study on antiviral effect of hypericin against infectious bronchitis virus in vitro . Chin Vet Sci 2018; 48: 1415-1422
  • 101 Kamuhabwa AAR, Huygens A, De Witte PAM. Photodynamic therapy of transitional cell carcinoma multicellular tumor spheroids with hypericin. Int J Oncol 2003; 23: 1445-1450
  • 102 Xu CS, Ling RN. Study of hypericin-mediated photodynamic therapy on human nasopharyngeal carcinoma cells. Laser Technology 2005; 29: 395-397
  • 103 Wan XY, Chen YT. A new photochemotherapy drug - Hypocrellin A. Sci Bull 1980; 24: 1148-1149
  • 104 Kishi T, Tahara S, Taniguchi N, Tsuda M, Tanaka C, Takahashi S. New perylenequinones from Shiraia bambusicola . Planta Med 1991; 57: 376-379
  • 105 Hu MM, Cai YJ, Liao XR, Hao ZK, Liu JY. Development of an HPLC method to analyze and prepare elsinochrome C and hypocrellin A in the submerged fermentation broth of Shiria sp SUPER-H168. Biomed Chromatogr 2012; 26: 737-742
  • 106 Diwu ZJ, Haugland RP, Liu J, Lown JW, Miller GG, Moore RB, Brown K, Tulip J, McPhee MS. Photosensitization by anticancer agents 21: New perylene- and aminonaphthoquinones. Free Radic Biol Med 1996; 20: 589-593
  • 107 Deininger MH, Weinschenk T, Morgalla MH, Meyermann R, Schluesener HJ. Release of regulators of angiogenesis following Hypocrellin-A and -B photodynamic therapy of human brain tumor cells. Biochem Biophys Res Commun 2002; 298: 520-530
  • 108 Chen J, Teng LR, Zheng KY, Li TJ, Ma L, Li C, Wu W, Fei XF. Study on the apoptotic molecule mechanism in A375-S2 cell induced by hypocrellin A. Chin Pharm J 2005; 40: 431-434
  • 109 Zhou JH, Xia SQ, Chen JR, Wang XS, Zhang BW, Zhang HJ, Zou P, Ai XC, Zhang JP. Surface binding and improved photodamage of the lanthanum ion complex of hypocrellin A to calf thymus DNA. J Photochem Photobiol A Chem 2004; 165: 143-147
  • 110 Zhao X. Key factors of photoactivated pesticide hypocrellin A against Botrytis cinere [dissertation]. Hangzhou: Zhejiang A&F University; 2015
  • 111 Mastrangelopoulou M, Grigalavicius M, Berg K, Menard M, Theodossiou TA. Cytotoxic and photocytotoxic effects of cercosporin on human tumor cell lines. Photochem Photobiol 2019; 95: 387-396
  • 112 Liu SS, Yang YH, Wang ZS. [Clinical study of CPD4-PDT for the prevention of postoperative recurrence in infiltrative bladder cancer]. Chin J Integr Med 1998; 18: 15-17
  • 113 Cao G, Guo T, Lu CT. Effect of CPD4 photodynamic therapy on endothelial cell in vitro . J Postgrad Med 2004; 17: 114-116
  • 114 Zhang JL, Chen P, Ding K, Dai SG, Wang K, Cao DL, Lin L, Tang GQ. Photodynamic effect of two kinds of CPD photosensitizers on sarcoma S180 transplanted in mice. Tianjin Med J 2006; 34: 705-707
  • 115 Yu HY. Silencing XBP1 expression enhances the sensitivity of human osteosarcoma HOS cells to MPPα-PDT [dissertation]. Chongqing: ChongQing Medical University; 2020
  • 116 Zhong SX. Inhibition of PERK pathway enhances sensitivity of human osteosarcoma HOS cells induced to pyropheophorbide-a methyl ester-mediated photodynamic therapy [dissertation]. Chongqing: ChongQing Medical University; 2019
  • 117 Wang L. Pyropheophorbide a photodynamic therapy in the control of golden hamster sebaceous patches [dissertation]. Nanjing: Nanjing University of Chinese Medicine; 2016
  • 118 Zeng XB. Inhibitive action of curcumin on human breast cancer and observation of the reinforcement effect after curcumin exposure to light [dissertation]. Chongqing: ChongQing Medical University; 2008
  • 119 Mou TL, Liu HM, Pan YS, He GF, Li ZW, Guo J, Pang DC, Zhai Z, Wu ZX. Study on the expression of tumor necrosis factor-α and cysteine protease-8 in cervical cancer xenografts and tumor tissues treated with multidose photodynamic therapy combined with curcumin. Global Tradit Chin Med 2022; 15: 543-549
  • 120 He JA, Hu YZ, Jiang LJ. Photodynamic action of phycobiliproteins: In situ generation of reactive oxygen species. Biochim Biophys Acta Bioenerg 1997; 1320: 165-174
  • 121 Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 60: 1620-1637
  • 122 Rao J, Xie J, Zhao JQ, Zhu T. Rhein-photodynamic sensitization generates free radicals and singlet oxygen. Sci Sin Chim 2004; 34: 211-217
  • 123 Hamblin MR, Abrahamse H. Tetracyclines: Light-activated antibiotics?. Future Med Chem 2019; 11: 2427-2445
  • 124 Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, Mattioli EJ, Di Giosia M, Danielli A, Fimognari C, Calvaresi M. Light-enhanced cytotoxicity of doxorubicin by photoactivation. Cells 2023; 12: 392
  • 125 Chen GQ, Guo LN, Wu QZ. A study of the photosensitizing effect of an extraction from a medicinal herb belongs to leguminosales. Med J Qilu 2001; 16: 279-280
  • 126 Yao CS, Wu QZ. Photosensitizing effect of two extracts from caulis lonicerae: A preliminary study. Chin J Laser Med Surg 2006; 15: 361-364
  • 127 Liao J, Li PP, Wu CJ. Screening new photosensitizers from Chinese medicinal herbs and searching for herbal photodynamic killing effects on human stomach cancer cells. Chin J Integr Med 1997; 17: 726-729
  • 128 Scotti F, Mou L, Huang C, Booker A, Weckerle C, Maake C, Heinrich M. Treating chronic wounds using photoactive metabolites: Data mining the Chinese pharmacopoeia for potential lead species. Planta Med 2021; 87: 1206-1218
  • 129 Shi YG, Lin S, Chen WX, Jiang L, Gu Q, Li DH, Chen YW. Dual-stage blue-light-guided membrane and DNA-targeted photodynamic inactivation using octyl gallate for ultraefficient eradication of planktonic bacteria and sessile biofilms. J Agric Food Chem 2022; 70: 7547-7565
  • 130 Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-mediated photodynamic inactivation mechanism for ablation of bacteria and biofilms in water augmented by potassium iodide under blue light irradiation. J Agric Food Chem 2023; 71: 13672-13687
  • 131 Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Date last accessed: February 22 2024 SSRN: https://ssrn.com/abstract=4517458 DOI: 10.2139/ssrn.4517458
  • 132 Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot 2004; 56: 337-346
  • 133 Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-targeted delivery of photosensitizers for cancer treatment. Molecules 2020; 25: 5317
  • 134 Escudero A, Carrillo-Carrión C, Castillejos MC, Romero-Ben E, Rosales-Barrios C, Khiar N. Photodynamic therapy: Photosensitizers and nanostructures. Mater Chem Front 2021; 5: 3788-3812