Hamostaseologie 2021; 41(03): 197-205
DOI: 10.1055/a-1447-6667
Review Article

Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms

Franziska C. Zeeh
1   Division of Hematology, University Hospital Basel, Basel, Switzerland
,
Sara C. Meyer
1   Division of Hematology, University Hospital Basel, Basel, Switzerland
2   Division of Hematology and Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
› Author Affiliations

Abstract

Philadelphia chromosome-negative myeloproliferative neoplasms are hematopoietic stem cell disorders characterized by dysregulated proliferation of mature myeloid blood cells. They can present as polycythemia vera, essential thrombocythemia, or myelofibrosis and are characterized by constitutive activation of JAK2 signaling. They share a propensity for thrombo-hemorrhagic complications and the risk of progression to acute myeloid leukemia. Attention has also been drawn to JAK2 mutant clonal hematopoiesis of indeterminate potential as a possible precursor state of MPN. Insight into the pathogenesis as well as options for the treatment of MPN has increased in the last years thanks to modern sequencing technologies and functional studies. Mutational analysis provides information on the oncogenic driver mutations in JAK2, CALR, or MPL in the majority of MPN patients. In addition, molecular markers enable more detailed prognostication and provide guidance for therapeutic decisions. While JAK2 inhibitors represent a standard of care for MF and resistant/refractory PV, allogeneic hematopoietic stem cell transplantation remains the only therapy with a curative potential in MPN so far but is reserved to a subset of patients. Thus, novel concepts for therapy are an important need, particularly in MF. Novel JAK2 inhibitors, combination therapy approaches with ruxolitinib, as well as therapeutic approaches addressing new molecular targets are in development. Current standards and recent advantages are discussed in this review.



Publication History

Received: 04 February 2021

Accepted: 17 March 2021

Article published online:
30 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Spivak JL. Myeloproliferative neoplasms. N Engl J Med 2017; 376 (22) 2168-2181
  • 2 Rampal R, Al-Shahrour F, Abdel-Wahab O. et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014; 123 (22) e123-e133
  • 3 Verstovsek S, Mesa RA, Gotlib J. et al; COMFORT-I Investigators. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol 2017; 10 (01) 55
  • 4 Brkic S, Meyer SC. Challenges and perspectives for therapeutic targeting of myeloproliferative neoplasms. HemaSphere 2020; 5 (01) e516
  • 5 Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res 2014; 20 (08) 2051-2059
  • 6 Skoda RC, Duek A, Grisouard J. Pathogenesis of myeloproliferative neoplasms. Exp Hematol 2015; 43 (08) 599-608
  • 7 Jang MA, Seo MY, Choi KJ, Hong DS. A rare case of essential thrombocythemia with coexisting JAK2 and MPL driver mutations. J Korean Med Sci 2020; 35 (23) e168
  • 8 Beucher A, Dib M, Orvain C. et al. Next generation sequencing redefines a triple negative essential thrombocythaemia as double-positive with rare mutations on JAK2 V617 and MPL W515 hotspots. Br J Haematol 2019; 186 (05) 785-788
  • 9 James C, Ugo V, Le Couédic JP. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434 (7037): 1144-1148
  • 10 Levine RL, Wadleigh M, Cools J. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7 (04) 387-397
  • 11 Kralovics R, Passamonti F, Buser AS. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352 (17) 1779-1790
  • 12 Baxter EJ, Scott LM, Campbell PJ. et al; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365 (9464): 1054-1061
  • 13 Scott LM, Tong W, Levine RL. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356 (05) 459-468
  • 14 Pikman Y, Lee BH, Mercher T. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3 (07) e270-e270
  • 15 Pardanani AD, Levine RL, Lasho T. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108 (10) 3472-3476
  • 16 Klampfl T, Gisslinger H, Harutyunyan AS. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369 (25) 2379-2390
  • 17 Nangalia J, Massie CE, Baxter EJ. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369 (25) 2391-2405
  • 18 Elf S, Abdelfattah NS, Chen E. et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov 2016; 6 (04) 368-381
  • 19 Tefferi A, Lasho TL, Finke CM. et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28 (07) 1472-1477
  • 20 Cabagnols X, Favale F, Pasquier F. et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood 2016; 127 (03) 333-342
  • 21 Lundberg P, Karow A, Nienhold R. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123 (14) 2220-2228
  • 22 Grinfeld J, Nangalia J, Baxter EJ. et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 2018; 379 (15) 1416-1430
  • 23 Abdel-Wahab O, Pardanani A, Patel J. et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 2011; 25 (07) 1200-1202
  • 24 Rampal R, Ahn J, Abdel-Wahab O. et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci U S A 2014; 111 (50) E5401-E5410
  • 25 Emanuel RM, Dueck AC, Geyer HL. et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012; 30 (33) 4098-4103
  • 26 Arber DA, Orazi A, Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20) 2391-2405
  • 27 Thiele J, Kvasnicka HM, Müllauer L, Buxhofer-Ausch V, Gisslinger B, Gisslinger H. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood 2011; 117 (21) 5710-5718
  • 28 Busque L, Patel JP, Figueroa ME. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44 (11) 1179-1181
  • 29 Jaiswal S, Fontanillas P, Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371 (26) 2488-2498
  • 30 Malcovati L, Gallì A, Travaglino E. et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 2017; 129 (25) 3371-3378
  • 31 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
  • 32 McKerrell T, Park N, Chi J. et al. JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics. Blood Adv 2017; 1 (14) 968-971
  • 33 Barbui T, Tefferi A, Vannucchi AM. et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia 2018; 32 (05) 1057-1069
  • 34 Landolfi R, Marchioli R, Kutti J. et al; European Collaboration on Low-Dose Aspirin in Polycythemia Vera Investigators. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004; 350 (02) 114-124
  • 35 Marchioli R, Finazzi G, Specchia G. et al; CYTO-PV Collaborative Group. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013; 368 (01) 22-33
  • 36 Barbui T, Masciulli A, Marfisi MR. et al. White blood cell counts and thrombosis in polycythemia vera: a subanalysis of the CYTO-PV study. Blood 2015; 126 (04) 560-561
  • 37 Gangat N, Strand J, Li CY, Wu W, Pardanani A, Tefferi A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol 2007; 138 (03) 354-358
  • 38 Passamonti F, Rumi E, Pietra D. et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010; 24 (09) 1574-1579
  • 39 Barosi G, Birgegard G, Finazzi G. et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol 2010; 148 (06) 961-963
  • 40 Kiladjian JJ, Cassinat B, Chevret S. et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112 (08) 3065-3072
  • 41 Gisslinger H, Klade C, Georgiev P. et al; PROUD-PV Study Group. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol 2020; 7 (03) e196-e208
  • 42 Vannucchi AM, Kiladjian JJ, Griesshammer M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015; 372 (05) 426-435
  • 43 Passamonti F, Griesshammer M, Palandri F. et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol 2017; 18 (01) 88-99
  • 44 Rocca B, Tosetto A, Betti S. et al. A randomized double-blind trial of 3 aspirin regimens to optimize antiplatelet therapy in essential thrombocythemia. Blood 2020; 136 (02) 171-182
  • 45 Alvarez-Larrán A, Pereira A, Guglielmelli P. et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica 2016; 101 (08) 926-931
  • 46 Barbui T, Finazzi G, Carobbio A. et al. Development and validation of an international prognostic score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 2012; 120 (26) 5128-5133 , quiz 5252
  • 47 Haider M, Gangat N, Lasho T. et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 Mayo Clinic patients. Am J Hematol 2016; 91 (04) 390-394
  • 48 Passamonti F, Thiele J, Girodon F. et al. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood 2012; 120 (06) 1197-1201
  • 49 Carobbio A, Antonioli E, Guglielmelli P. et al. Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol 2008; 26 (16) 2732-2736
  • 50 Carobbio A, Ferrari A, Masciulli A, Ghirardi A, Barosi G, Barbui T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv 2019; 3 (11) 1729-1737
  • 51 Harrison CN, Campbell PJ, Buck G. et al; United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353 (01) 33-45
  • 52 Gisslinger H, Gotic M, Holowiecki J. et al; ANAHYDRET Study Group. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood 2013; 121 (10) 1720-1728
  • 53 Gisslinger H, Buxhofer-Ausch V, Hodisch J. et al. A phase III randomized, multicentre, double blind, active controlled trial to compare the efficacy and safety of two different anagrelide formulations in patients with essential thrombocythaemia - the TEAM-ET 2·0 trial. Br J Haematol 2019; 185 (04) 691-700
  • 54 Harrison CN, Mead AJ, Panchal A. et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood 2017; 130 (17) 1889-1897
  • 55 O'Sullivan JM, Hamblin A, Yap C. et al. The poor outcome in high molecular risk, hydroxycarbamide-resistant/intolerant ET is not ameliorated by ruxolitinib. Blood 2019; 134 (23) 2107-2111
  • 56 Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol 2021; 96 (01) 145-162
  • 57 Passamonti F, Cervantes F, Vannucchi AM. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115 (09) 1703-1708
  • 58 Gangat N, Caramazza D, Vaidya R. et al. DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29 (04) 392-397
  • 59 Guglielmelli P, Lasho TL, Rotunno G. et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol 2018; 36 (04) 310-318
  • 60 Tefferi A, Guglielmelli P, Lasho TL. et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol 2018; 36 (17) 1769-1770
  • 61 Tefferi A, Guglielmelli P, Nicolosi M. et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia 2018; 32 (07) 1631-1642
  • 62 Cervantes F, Isola IM, Alvarez-Larrán A, Hernández-Boluda JC, Correa JG, Pereira A. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol 2015; 94 (11) 1791-1796
  • 63 Verstovsek S, Mesa RA, Gotlib J. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366 (09) 799-807
  • 64 Harrison C, Kiladjian J-J, Al-Ali HK. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366 (09) 787-798
  • 65 Verstovsek S, Gotlib J, Mesa RA. et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol 2017; 10 (01) 156
  • 66 Martínez-Trillos A, Gaya A, Maffioli M. et al. Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients. Ann Hematol 2010; 89 (12) 1233-1237
  • 67 Geyer HL, Dueck AC, Scherber RM, Mesa RA. Impact of inflammation on myeloproliferative neoplasm symptom development. Mediators Inflamm 2015; 2015: 284706
  • 68 Kleppe M, Kwak M, Koppikar P. et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov 2015; 5 (03) 316-331
  • 69 Porpaczy E, Tripolt S, Hoelbl-Kovacic A. et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132 (07) 694-706
  • 70 Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011; 86 (12) 1188-1191
  • 71 Palandri F, Palumbo GA, Elli EM. et al. Ruxolitinib discontinuation syndrome: incidence, risk factors, and management in 251 patients with myelofibrosis. Blood Cancer J 2021; 11 (01) 4
  • 72 Kröger NM, Deeg JH, Olavarria E. et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia 2015; 29 (11) 2126-2133
  • 73 Pardanani A, Harrison C, Cortes JE. et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol 2015; 1 (05) 643-651
  • 74 Harrison CN, Schaap N, Vannucchi AM. et al. Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol 2020; 95 (06) 594-603
  • 75 Mullally A, Hood J, Harrison C, Mesa R. Fedratinib in myelofibrosis. Blood Adv 2020; 4 (08) 1792-1800
  • 76 Harrison CN, Vannucchi AM, Platzbecker U. et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol 2018; 5 (02) e73-e81
  • 77 Mascarenhas J, Hoffman R, Talpaz M. et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol 2018; 4 (05) 652-659
  • 78 Waibel M, Solomon VS, Knight DA. et al. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep 2013; 5 (04) 1047-1059
  • 79 Tefferi A, Lasho TL, Begna KH. et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 2015; 373 (10) 908-919
  • 80 Baerlocher GM, Oppliger Leibundgut E, Ottmann OG. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N Engl J Med 2015; 373 (10) 920-928