Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 7, 2008

Lipid changes occuring in the course of hematological cancers

  • Małgorzata Kuliszkiewicz-Janus EMAIL logo , Rafał Małecki and Abdulrahman Mohamed

Abstract

The relationship between plasma lipid levels and mortality from cardiovascular diseases has been shown in many studies, but there has been far less investigation into their relationship to non-cardiovascular diseases. The aim of this study was to investigate the lipid profile of individuals with hematological malignancies and its relationship to disease activity. 238 patients were included in the study: 84 with acute leukemia, 62 with non-Hodgkin lymphoma, 35 with Hodgkin’s lymphoma, 32 with multiple myeloma, and 25 with myeloproliferative syndrome. The HDL cholesterol level of the patients differed to that of the individuals in the control group in the active disease period for all the analyzed disorders, but only remained statistically significant in the acute leukemia and non-Hodgkin lymphoma groups during the remission period. Smaller differences were observed for the remaining lipid fractions, except for the triglyceride level, which increased in the active disease period in all the analyzed disorders except non-Hodgkin lymphoma. The most pronounced changes in the lipid fractions occurred in the HDL cholesterol level, and were the most remarkable for acute leukemia.

[1] Castelli, W.P., Garrison, R.J., Wilson, P.W., Abbott, R.D., Kalousdian, S. and Kannel, W.B. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256 (1986) 2835–2738. http://dx.doi.org/10.1001/jama.256.20.283510.1001/jama.256.20.2835Search in Google Scholar

[2] Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344 (1994) 1383–1389. 10.1016/S0140-6736(94)90566-5Search in Google Scholar

[3] Kreger, B.E., Anderson, K.M., Schatzkin, A. and Splansky, G.L. Serum cholesterol level, body mass index, and the risk of colon cancer. The Framingham Study. Cancer 70 (1992) 1038–1043. http://dx.doi.org/10.1002/1097-0142(19920901)70:5<1038::AID-CNCR2820700505>3.0.CO;2-M10.1002/1097-0142(19920901)70:5<1038::AID-CNCR2820700505>3.0.CO;2-MSearch in Google Scholar

[4] Sherwin, R.W., Wentworth, D.N., Cutler, J.A., Hulley, S.B., Kuller, L.H. and Stamler, J. Serum cholesterol levels and cancer mortality in 361,662 men screened for the Multiple Risk Factor Intervention Trial. JAMA 257 (1987) 943–948. http://dx.doi.org/10.1001/jama.257.7.94310.1001/jama.257.7.943Search in Google Scholar

[5] Fiorenza, A.M., Branchi, A. and Sommariva, D. Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int. J. Clin. Lab. Res. 30 (2000) 141–145. http://dx.doi.org/10.1007/s00599007001310.1007/s005990070013Search in Google Scholar

[6] Musolino, C., Calabro, L., Bellomo, G., Cincotta, M., Di Giacomo, V., Pezzano, C., Loteta, B., Rizzo, V., Guglielmo, S. and Alonci, A. Lipid profile in hematologic neoplasms. Recenti Prog. Med. 93 (2002) 298–301. Search in Google Scholar

[7] Dessi, S., Batetta, B., Pulisci, D., Accogli, P., Pani, P. and Broccia, G. Total and HDL cholesterol in human hematologic neoplasms. Int. J. Hematol. 54 (1991) 483–486. Search in Google Scholar

[8] Scribano, D., Baroni, S., Pagano, L., Zuppi, C., Leone, G. and Giardina, B. Return to normal values of lipid pattern after effective chemotherapy in acute lymphoblastic leukemia. Haematologica 81 (1996) 343–345. Search in Google Scholar

[9] Moschovi, M., Trimis, G., Apostolakou, F., Papassotiriou, I. and Tzortzatou-Stathopoulou, F. Serum lipid alterations in acute lymphoblastic leukemia of childhood. J. Pediatr. Hematol. Oncol. 26 (2004) 289–293. http://dx.doi.org/10.1097/00043426-200405000-0000610.1097/00043426-200405000-00006Search in Google Scholar

[10] Kuliszkiewicz-Janus, M., Tuz, M.A. and Baczyński, S. Application of 31P MRS to the analysis of phospholipid changes in plasma of patients with acute leukemia. Biochim. Biophys. Acta 1737 (2005) 11–15. Search in Google Scholar

[11] Lorenc, J., Kozak-Michałowska, I. and Polkowska-Kulesza, E. Disorders of lipid and lipoprotein metabolism in patients with chronic lymphocytic leukemia. I. Preliminary evaluation of lipemia and HDL fractions in various stages of the disease. Przegl. Lek. 46 (1989) 713–718. Search in Google Scholar

[12] Ginsberg, H.N., Le, N.A. and Gilbert, H.S. Altered high density lipoprotein metabolism in patients with myeloproliferative disorders and hypocholesterolemia. Metabolism 35 (1986) 878–882. http://dx.doi.org/10.1016/0026-0495(86)90232-510.1016/0026-0495(86)90232-5Search in Google Scholar

[13] Gilbert, H.S. and Ginsberg, H. Hypocholesterolemia as a manifestation of disease activity in chronic myelocytic leukemia. Cancer 51 (1983) 1428–1433. http://dx.doi.org/10.1002/1097-0142(19830415)51:8<1428::AID-CNCR2820510817>3.0.CO;2-X10.1002/1097-0142(19830415)51:8<1428::AID-CNCR2820510817>3.0.CO;2-XSearch in Google Scholar

[14] Ghalaut, V.S., Pahwa, M.B., Sunita and Ghalaut, P.S. Alteration in lipid profile in patients of chronic myeloid leukemia before and after chemotherapy. Clin. Chim. Acta 366 (2006) 239–428. http://dx.doi.org/10.1016/j.cca.2005.10.02210.1016/j.cca.2005.10.022Search in Google Scholar

[15] Hachem, H., Favre, G., Ghalim, N., Puchois, P., Fruchart, J.C. and Soula, G. Quantitative abnormalities of lipoprotein particles in multiple myeloma. J. Clin. Chem. Clin. Biochem. 25 (1987) 675–679. Search in Google Scholar

[16] Kuliszkiewicz-Janus, M. and Baczyński, S. Chemotherapy-associated changes in 31P MRS spectra of sera from patients with multiple myeloma. NMR Biomed 8 (1995) 127–132. http://dx.doi.org/10.1002/nbm.194008030810.1002/nbm.1940080308Search in Google Scholar

[17] Kuliszkiewicz-Janus, M. and Baczyński, S. Application of 31P NMR spectroscopy to monitor chemotherapy-associated changes of serum phospholipids in patients with malignant lymphomas. Magn. Reson. Med. 35 (1996) 449–456. Search in Google Scholar

[18] van Leeuwen, H.J., Heezius, E.C., Dallinga, G.M., van Strijp, J.A., Verhoef, J. and van Kessel, KP. Lipoprotein metabolism in patients with severe sepsis. Crit. Care Med. 31 (2003) 1359–1366. http://dx.doi.org/10.1097/01.CCM.0000059724.08290.5110.1097/01.CCM.0000059724.08290.51Search in Google Scholar PubMed

[19] Sakashita, A.M., Bydlowski, S.P., Chamone, D.A. and Maranhao RC. Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia. Ann. Hematol. 79 (2000) 687–690. http://dx.doi.org/10.1007/s00277000020510.1007/s002770000205Search in Google Scholar PubMed

[20] Baroni, S., Scribano, D., Zuppi, C., Pagano, L., Leone, G. and Giardina, B. Prognostic relevance of lipoprotein cholesterol levels in acute lymphocytic and nonlymphocytic leukemia. Acta Haematol. 96 (1996) 24–28. http://dx.doi.org/10.1159/00020371010.1159/000203710Search in Google Scholar PubMed

[21] Moran, C.S., Campbell, J.H. and Campbell, G.R. Human leukemia inhibitory factor upregulates LDL-C receptors on liver cells and decreases serum cholesterol in the cholesterol-fed rabbit. Arterioscler. Thromb. Vasc. Biol. 17 (1997) 1267–1273. Search in Google Scholar

[22] Goncalves, R.P., Rodrigues, D.G. and Maranhao, R.C. Uptake of high density lipoprotein (HDL) cholesteryl esters by human acute leukemia cells. Leuk. Res. 29 (2005) 955–959. http://dx.doi.org/10.1016/j.leukres.2005.01.01310.1016/j.leukres.2005.01.013Search in Google Scholar PubMed

Published Online: 2008-7-7
Published in Print: 2008-9-1

© 2008 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-008-0014-9/html
Scroll to top button