Skip to main content
Log in

Encephalopathy after High-Dose Ifosfamide

A Retrospective Cohort Study and Review of the Literature

  • Short Communication
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Background: Encephalopathy occurs in 10–40% of patients treated with high-dose ifosfamide. Proposed risk factors for encephalopathy include hepatic or renal dysfunction, brain metastases, electrolyte imbalances and drug-drug interactions.

Objective: The purpose of this retrospective cohort study and literature review was to estimate the prevalence of encephalopathy, identify characteristics associated with encephalopathy and evaluate the effectiveness of methylthioninium chloride (methylene blue) in its prevention.

Study design and methods: A total of 19 patients received high-dose ifosfamide for soft tissue sarcoma during a 4-year period at our medical centre. Eight patients developed encephalopathy based on adverse drug event (ADE) reports submitted by a clinical pharmacist. These reports incorporate the Naranjo probability scale, which is used to assess the likelihood that a change in clinical status is the result of an ADE rather than the result of other factors, such as progression of disease. The demographics, concurrent medication therapy, co-existing illnesses and laboratory parameters were documented from the medical records. We also conducted a review of the literature by searching MEDLINE (1996–October 2007).

Main outcome and results: A total of 19 patients received high-dose ifosfamide; eight patients experienced encephalopathy (group I, 42%) and 11 patients did not experience encephalopathy (group II, 58%). More women than men developed encephalopathy (group I, 87.5% vs group II, 27.3%). Serum albumin (group I, 3.1 ±0.3 vs group II, 3.6 ±0.3 g/dL), haemoglobin (10.5 ±1.5 vs 12.4 ±1.7 g/dL) and total bilirubin (0.5 ±0.2 vs 0.8 ±0.3 mg/dL) levels were substantially lower in patients with encephalopathy, whereas the ratio of actual bodyweight to the ideal bodyweight (1.4 ±0.3 vs 1.1 ±0.2) was substantially higher in these patients. Five (62.5%) patients received a subsequent cycle of high-dose ifosfamide; all of these patients received methylthioninium chloride to minimize the risk of encephalopathy. All of these patients developed encephalopathy. Other reports have found that hypoalbuminaemia is associated with encephalopathy and that methylthioninium chloride does not prevent ifosfamide-induced encephalopathy.

Conclusions: In summary, female sex, low total bilirubin, albumin and haemoglobin levels, and obesity appear to be associated with ifosfamide-induced encephalopathy. Methylthioninium chloride did not appear to prevent encephalopathy with subsequent doses of high-dose ifosfamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1

References

  1. David KA, Picus J. Evaluating risk factors for the development of ifosfamide encephalopathy. Am J Clin Oncol 2005; 28(3): 277–80

    Article  PubMed  CAS  Google Scholar 

  2. Miller LJ, Eaton VE. Ifosfamide-induced neurotoxicity: a case report and review of the literature. Ann Pharmacother 1992; 26(2): 183–7

    PubMed  CAS  Google Scholar 

  3. Rieger C, Fiegl M, Tischer J, et al. Incidence and severity of ifosfamide-induced encephalopathy. Anticancer Drugs 2004; 15(4): 347–50

    Article  PubMed  CAS  Google Scholar 

  4. DiMaggio JR, Brown R, Baile WF, et al. Hallucinations and ifosfamide-induced neurotoxicity. Cancer 1994; 73(5): 1509–14

    Article  PubMed  CAS  Google Scholar 

  5. Merimsky O, Reider-Groswasser I, Wigler N, et al. Encephalopathy in ifosfamide-treated patients. Acta Neurol Scand 1992; 86(5): 521–5

    Article  PubMed  CAS  Google Scholar 

  6. Curtin JP, Koonings PP, Gutierrez M, et al. Ifosfamide-induced neurotoxicity. Gynecol Oncol 1991; 42(3): 193–6; discussion 191–2

    Article  PubMed  CAS  Google Scholar 

  7. Turner AR, Duong CD, Good DJ. Methylene blue for the treatment and prophylaxis of ifosfamide-induced encephalopathy. Clin Oncol (R Coll Radiol) 2003; 15(7): 435–9

    Article  CAS  Google Scholar 

  8. Pelgrims J, De Vos F, Van den Brande J, et al. Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature. Br J Cancer 2000; 82(2): 291–4

    Article  PubMed  CAS  Google Scholar 

  9. Patel PN. Methylene blue for management of ifosfamide-induced encephalopathy. Ann Pharmacother 2006; 40(2): 299–303

    Article  PubMed  CAS  Google Scholar 

  10. Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 1997; 17 (5 Pt 2): 146S–54S

    PubMed  CAS  Google Scholar 

  11. Meanwell CA, Kelly KA, Blackledge G. Avoiding ifosfamide/ mesna encephalopathy. Lancet 1986; 2(8503): 406

    Article  PubMed  CAS  Google Scholar 

  12. Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38(4): 291–304

    Article  PubMed  CAS  Google Scholar 

  13. Chen CS, Jounaidi Y, Waxman DJ. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos 2005; 33(9): 1261–7

    Article  PubMed  CAS  Google Scholar 

  14. Roy P, Tretyakov O, Wright J, et al. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab Dispos 1999; 27(11): 1309–18

    CAS  Google Scholar 

  15. Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59(8): 961–72

    Article  PubMed  CAS  Google Scholar 

  16. Goren MP, Wright RK, Pratt CB, et al. Dechloroethylation of ifosfamide and neurotoxicity. Lancet 1986; 2(8517): 1219–20

    Article  PubMed  CAS  Google Scholar 

  17. Wainer IW, Ducharme J, Granvil CP, et al. Ifosfamide stereoselective dichloroethylation and neurotoxicity. Lancet 1994; 343(8903): 982–3

    Article  PubMed  CAS  Google Scholar 

  18. Meanwell CA, Blake AE, Latief TN, et al. Encephalopathy associated with ifosphamide/mesna therapy. Lancet 1985; 1(8425): 406–7

    Article  PubMed  CAS  Google Scholar 

  19. Cantwell BM, Harris AL. Ifosfamide/mesa and encephalopathy. Lancet 1985; 1(8431): 752

    Article  PubMed  CAS  Google Scholar 

  20. Meanwell CA, Blake AE, Kelly KA, et al. Prediction of ifosfamide/mesna associated encephalopathy. Eur J Cancer Clin Oncol 1986; 22(7): 815–9 996

    Article  PubMed  CAS  Google Scholar 

  21. Heim ME, Fiene R, Schick E, et al. Central nervous side effects following ifosfamide monotherapy of advanced renal carcinoma. J Cancer Res Clin Oncol 1981; 100(1): 113–6

    Article  PubMed  CAS  Google Scholar 

  22. Brade WP, Herdrich K, Varini M. Ifosfamide: pharmacology, safety and therapeutic potential. Cancer Treat Rev 1985; 12(1): 1–47

    Article  PubMed  CAS  Google Scholar 

  23. Lind MJ, Margison JM, Cerny T, et al. Comparative pharmacokinetics and alkylating activity of fractionated intravenous and oral ifosfamide in patients with bronchogenic carcinoma. Cancer Res 1989; 49(3): 753–7

    PubMed  CAS  Google Scholar 

  24. Cerny T, Castiglione M, Brunner K, et al. Ifosfamide by continuous infusion to prevent encephalopathy [letter]. Lancet 1990; 335(8682): 175

    Article  PubMed  CAS  Google Scholar 

  25. Brunello A, Basso U, Rossi E, et al. Ifosfamide-related encephalopathy in elderly patients: report of five cases and review of the literature. Drugs Aging 2007; 24(11): 967–73

    Article  PubMed  CAS  Google Scholar 

  26. Chen CS, Lin JT, Goss KA, et al. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol Pharmacol 2004; 65(5): 1278–85

    Article  PubMed  CAS  Google Scholar 

  27. Kerbusch T, de Kraker J, Keizer HJ, et al. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet 2001; 40(1): 41–62

    Article  PubMed  CAS  Google Scholar 

  28. Highley MS, Schrijvers D, Van Oosterom AT, et al. Activated oxazaphosphorines are transported predominantly by erythrocytes. Ann Oncol 1997; 8(11): 1139–44

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt R, Baumann F, Hanschmann H, et al. Gender difference in ifosfamide metabolism by human liver microsomes. Eur J Drug Metab Pharmacokinet 2001; 26(3): 193–200

    Article  PubMed  CAS  Google Scholar 

  30. Freyer G, Tranchand B, Ligneau B, et al. Population pharmacokinetics of doxorubicin, etoposide and ifosfamide in small cell lung cancer patients: results of a multicentre study. Br J Clin Pharmacol 2000; 50(4): 315–24

    Article  PubMed  CAS  Google Scholar 

  31. Kerbusch T, Mathjt RA, Keizer HJ, et al. Population pharmacokinetics and exploratory pharmacodynamics of ifosfamide and metabolites after a 72-h continuous infusion in patients with soft tissue sarcoma. Eur J Clin Pharmacol 2001; 57(6-7): 467–77

    Article  PubMed  CAS  Google Scholar 

  32. Perren TJ, Turner RC, Smith IE. Encephalopathy with rapid infusion ifosfamide/mesna. Lancet 1987; 1(8529): 390–1

    Article  PubMed  CAS  Google Scholar 

  33. Salloum E, Flamant F, Ghosn M, et al. Irreversible encephalopathy with ifosfamide/mesna. J Clin Oncol 1987; 5(8): 1303–4

    PubMed  CAS  Google Scholar 

  34. Antman KH, Elias A, Ryan L. Ifosfamide and mesna: response and toxicity at standard-and high-dose schedules. Semin Oncol 1990; 17 (2 Suppl. 4): 68–73

    PubMed  CAS  Google Scholar 

  35. Ferrero JM, Eftekari P, Largillier R, et al. Treatment of ifosfamide induced encephalopathy with methylene-blue [in French]. Bull Cancer 1995; 82(7): 598–9

    PubMed  CAS  Google Scholar 

  36. Kupfer A, Aeschlimann C, Wermuth B, et al. Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 1994; 343(8900): 763–4

    Article  PubMed  CAS  Google Scholar 

  37. Zulian GB, Tullen E, Maton B. Methylene blue for ifosfamide-associated encephalopathy. N Engl J Med 1995; 332(18): 1239–40

    Article  PubMed  CAS  Google Scholar 

  38. Alonso JL, Nieto Y, Lopez JA, et al. Ifosfamide encephalopathy and methylene-blue: a case report. Ann Oncol 1996; 7(6): 643–4

    Article  PubMed  CAS  Google Scholar 

  39. Demandt M, Wandt H. Successful treatment with methylene blue of ifosfamide-induced central nervous system effects [letter; in German]. Dtsch Med Wochenschr 1996; 121(17): 575

    PubMed  CAS  Google Scholar 

  40. Koschuth A, Spath-Schwalbe PE, Possinger K. Methylene blue in ifosfamide-induced encephalopathy [letter; in German]. Dtsch Med Wochenschr 1996; 121(39): 1210

    PubMed  CAS  Google Scholar 

  41. Nicolao P, Giometto B. Neurological toxicity of ifosfamide. Oncology 2003; 65 Suppl. 2: 11–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest directly relevant to the content of the study to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy S. Shord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweiss, K.I., Beri, R. & Shord, S.S. Encephalopathy after High-Dose Ifosfamide. Drug-Safety 31, 989–996 (2008). https://doi.org/10.2165/00002018-200831110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200831110-00003

Keywords

Navigation