Skip to main content
Log in

Sexual dimorphism in innate immune responses to infectious organisms

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Gender has long been known to be a contributory factor in the incidence and progression of disorders associated with immune system dysregulation. More recently, evidence has accumulated that gender may also play an important role in infectious disease susceptibility. In general, females generate more robust and potentially protective humoral and cell-medated immune responses following antigenic challenge than their male counterparts. In contrast, males have frequently been observed to mount more aggressive and damaging inflammatory immune responses to microbial stimuli. In this article we review the evidence for sexual dimorphism in innate immune responses to infectious organisms and describe our recent studies that may provide a mechanism underlying gender-based differences in conditions such as bacterial sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olsen NJ, Kovacs WJ: Gonadal steroids and immunity. Endocr Rev 1996;17:369–384.

    Article  PubMed  CAS  Google Scholar 

  2. Zuk M, McKean KA: Sex differences in parasite infections: patterns and processes. Int Parasitol 1996; 26:1009–1023.

    Article  CAS  Google Scholar 

  3. Poulin R: Helminth growth in vertebrate hosts: does host sex matter? Int J Parasitol 1996;6:1311–1315.

    Article  Google Scholar 

  4. Butterworth M, McClellan B, Allansmith M: Influence of sex in immunoglobulin levels. Nature 1967;214: 1224–1225.

    Article  PubMed  CAS  Google Scholar 

  5. Lichtman MA, Vaughan JH, Hames CG: The distribution of serum immunoglobulins, anti-gamma-G globulins (“rheumatoid factors”) and antinuclear antibodies in White and Negro subjects in Evans County, Georgia. Arthritis Rheum 1967;10:204–215.

    Article  PubMed  CAS  Google Scholar 

  6. Grundbacher FJ: Human X chromosome carries quantitative genes for immunoglobulin M. Science 1972;176:311–312.

    Article  PubMed  CAS  Google Scholar 

  7. Eidinger D, Garrett TJ: Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J Exp Med. 1972;136:1098–1116.

    Article  PubMed  CAS  Google Scholar 

  8. Inman RD: Immunologic sex differences and the female predominance in systemic lupus erythematosus. Arthritis Rheum. 1978;21:849–852.

    Article  PubMed  CAS  Google Scholar 

  9. Michaels RM, Rogers KD: A sex difference in immunologic responsiveness. Pediatrics 1971;47:120–123.

    PubMed  CAS  Google Scholar 

  10. Nurmi T, Leinonen M, Haiva VM, Tiilikainen A, Kouvalainen K: Antibody response to pneumococcal vaccine in patients with trisomy-21 (Down's syndrome). Clin Exp Immunol 1982;48:485–490.

    PubMed  CAS  Google Scholar 

  11. Leen CL, Barclay GR, McClelland DB: Selection of plasma donors suitable for tetanus boosting. Vox Sang 1986;51:197–201.

    PubMed  CAS  Google Scholar 

  12. Vranckx R, Muylle L, Cole J, Moldenhaser R, Peetermans ME: HBV vaccinations in medical and paramedical staff: the impact of age on immunization results. Vox Sang 1986;50:220–222.

    PubMed  CAS  Google Scholar 

  13. Pozzilli P, Signore A, Williams AJ, Beales PE: NOD mouse colonies around the world—recent facts and figures. Immunol Today 1993;14:193–196.

    Article  PubMed  CAS  Google Scholar 

  14. Bao, M., Yang Y, Jun HS, Yoon JW: Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 2002;168:5369–5375.

    PubMed  CAS  Google Scholar 

  15. Gregory MS, Faunce DE, Duffner LA, Kovacs EJ: Gender difference in cell-mediated immunity after thermal injury is mediated, in part, by elevated levels of interleukin-6. J Leukoc Biol. 2000;67:319–326.

    PubMed  CAS  Google Scholar 

  16. Weinstein Y, Ran S, Segal S: Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol. 1984;132:656–661.

    PubMed  CAS  Google Scholar 

  17. Nagel JE, Chrest FJ, Adler WH: Enumeration of T lymphocyte subsets by monoclonal antibodies in young and aged humans. J Immunol 1981;127:2086–2088.

    PubMed  CAS  Google Scholar 

  18. Hallgren HM, Jackola DR, O'Leary JJ: Unusual pattern of surface marker expression on peripheral lymphocytes from aged humans suggestive of a population of less differentiated cells. J Immunol 1983;131: 191–194.

    PubMed  CAS  Google Scholar 

  19. Mylvaganam R, Ahn YS, Harrington WJ, Kim CI, Gratzner HG. Differences in T cell subsets between men and women with idiopathic thrombocytopenic purpura. Blood 1985;66:967–972.

    PubMed  CAS  Google Scholar 

  20. Amadori A, Zamarchi R, De Silvestro G, et al: Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med 1995;1:1279–1283.

    Article  PubMed  CAS  Google Scholar 

  21. Bizzarro A, Valentini G, Di Martino G, Da Ponte A, De Bellis A, Iacono G: Influence of testosterone therapy on clinical and immunological features of autoimmune diseases associated with Klinefelter's syndrome. J Clin Endocrinol Metab 1987;64:32–36.

    PubMed  CAS  Google Scholar 

  22. Yamamoto Y, Saito H, Setogawa T, Tomioka H: Sex differences in host resistance to Mycobacterium marinum infection in mice. Infect Immun 1991;59:4089–4096.

    PubMed  CAS  Google Scholar 

  23. Offner PJ, Moore EE, Biffl WL: Male gender is a risk factor for major infections after surgery. Arch Surg 1999;134:935–938.

    Article  PubMed  CAS  Google Scholar 

  24. McGowan JE Jr, Barnes MW, Finland M: Bacteremia at Boston City Hospital: Occurrence and mortality during 12 selected years (1935–1972), with special reference to hospital-acquired cases. J Infect Dis 1975; 132:316–335.

    PubMed  Google Scholar 

  25. Wichmann MW, Inthorn D, Andress HJ, Schildberg FW: Incidence and mortality of severe sepsis in surgical intensive care patients: the influence of patient gender on disease process and outcome. Intensive Care Med 2000;26:167–172.

    Article  PubMed  CAS  Google Scholar 

  26. Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F: Gender differences in human sepsis. Arch Surg 1998;133:1200–1205.

    Article  PubMed  CAS  Google Scholar 

  27. Dinkel RH, Lebok U: A survey of nosocomial infections and their influence on hospital mortality rates. J Hosp Infect 1994;28:297–304.

    Article  PubMed  CAS  Google Scholar 

  28. Oliver JD: Foodbourne Bacterial Pathogens, Doyle MP (ed). New York, NY, Marcel-Dekker, Inc. 1989, pp. 569–600.

    Google Scholar 

  29. Merkel SM, Alexander S, Zufall E, Oliver JD, Huet-Hudson YM: Essential role for estrogen in protection against Vibrio vulnificus-induced endotoxic shock. Infect Immun 2001;69:6119–6122.

    Article  PubMed  CAS  Google Scholar 

  30. Zellweger R, Wichmann MW, Ayala A, Stein S, DeMaso CM, Chaudry IH: Pemales in proestrus state maintain splenic immune functions and tolerate sepsis better than males. Crit Care Med 1997;25: 106–110.

    Article  PubMed  CAS  Google Scholar 

  31. Diodato MD, Knoferl MW, Schwacha MG, Bland KI, Chaudry IH: Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine 2001;14:162–169.

    Article  PubMed  CAS  Google Scholar 

  32. Blackwell TS, Christman JW: Supsis and cytokines: current status. Br J Anaesth 1996;77:110–117.

    PubMed  CAS  Google Scholar 

  33. Marriott I, Bost KL, and Huet-Hudson YM: Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J. Repord Immunol, in press.

  34. Moxley G, Posthuma D, Carlson P, et al Sexual dimorphism in innate immunity. Arthritis Rheum 2002;46:250–258.

    Article  PubMed  Google Scholar 

  35. Moxley G, Stern AG, Carlson P, Estrada E, Han J, Benson LL: Premenopausal sexual dimorphism in lipopolysaccharide-stimulated production and secretion of tumor necrosis factor. J Rheumatol 2004; 31:686–694.

    PubMed  CAS  Google Scholar 

  36. Kahlke V, Angele MK, Ayala A, et al: Immune dysfunction following trauma-haemorrhage: influence of gender and age. Cytokine 2000:12:69–77.

    Article  PubMed  CAS  Google Scholar 

  37. Spitzer JA, Zhang P: Gender differences in neutrophil function and cytokine-induced neutrophil chemoattractant generation in endotoxic rats. Inflammation 1996;20:485–498.

    Article  PubMed  CAS  Google Scholar 

  38. Du JT, Vennos E, Ramey E, Ramwell PW: Sex differences in arachidonate cyclo-oxygenase products in elicited rat peritoneal macrophages. Biochim Biophys Acta 1984;794:256–260.

    PubMed  CAS  Google Scholar 

  39. Leslie CA, Gonnerman WA, Cathcart ES: Gender differences in eicosanoid production from macrophages of arthritis-susceptible mice. J Immunol 1987;138:413–416.

    PubMed  CAS  Google Scholar 

  40. Gregory MS, Duffner LA, Hahn EL, Tai HH, Faunce DE, Kovacs EJ: Differential production of prostaglandin E(2) in male and female mice subjected to thermal injury contributes to the gender difference in immune function: possible role for 15-hydroxyprostaglandin dehydrogenase. Cell Immunol 2000; 205:94–102.

    Article  PubMed  CAS  Google Scholar 

  41. Huber SA, Pfaeffle B: Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol 1994;68: 5126–5132.

    PubMed  CAS  Google Scholar 

  42. Huber SA: Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role for CD1d. Med Microbiol Immunol (Berl) 2005: 194:121–127.

    Article  CAS  Google Scholar 

  43. Quach C, Piche-Walker L, Platt R, Moore D: Risk factors associated with severe influenza infections in childhood: implication for vaccine strategy. Pediatrics 2003;112:e197-e201.

    Article  PubMed  Google Scholar 

  44. Villacres MC, Longmate J, Auge C, Diamond DJ: Predominant type 1 CMV-specific memory T-helper response in humans: evidence for gender differences in cytokine secretion. Hum Immunol 2004;65:476–485.

    Article  PubMed  CAS  Google Scholar 

  45. Nagayama Y, Tsubaki T, Nakayama S, et al: Gender analysis in acute bronchiolitis due to respiratory syncytial virus. Pediatr Allergy Immunol 2006;17:29–36.

    Article  PubMed  Google Scholar 

  46. Curiel RE, Miller MH, Ishikawa R, Thomas DC, Bigley NJ: Does the gender difference in interferon production seen in picoronavirus-infected spleen cell cultures from ICR Swiss mice have any in vivo significance? J Interferon Res 1993:13:387–395.

    PubMed  CAS  Google Scholar 

  47. Barna M, Komatsu T, Bi Z, Reiss CS: Sex differences in susceptibility to viral infection of the central nervous system. J Neuroimmunol 1996;67:31–39.

    PubMed  Google Scholar 

  48. Knoblich A, Gortz J, Harle-Grupp V, Falke D: Kinetics and genetics of herpes simplex virus-induced antibody formation in mice. Infect Immun 1983;39:15–23.

    PubMed  CAS  Google Scholar 

  49. Han X, Lundberg P, Tanamachi B, Openshaw H, Longmate J, Cantin E: Gender influences herpes simplex virus type 1 infection in normal and gamma interferonmutant mice. J Virol 2001;75:3048–3052.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner HJ, Hornef M, Teichert HM, Kirchner H: Sex differencein the serostatus of adults to the Epstein-Barr virus. Immunobiology 1994;190:424–429.

    PubMed  CAS  Google Scholar 

  51. Stanberry LR, Spruance SL, Cunningham AL, et al. GlaxoSmithKline Herpes Vaccine Efficacy Study Group: Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347:1652–1661.

    Article  PubMed  CAS  Google Scholar 

  52. Hill JM, Dudley JB, Shimomura Y, Kaufman HE: Quantitation and kinetics of induced HSV-1 ocular shedding. Curr Eye Res 1986;5:241–246.

    PubMed  CAS  Google Scholar 

  53. Yirrell DL, Blyth WA, Hill TJ: The influence of androgens on paralysis in mice following intravenous inoculation of herpes simplex virus. J Gen Virol 1987; 68:2461–2464.

    PubMed  CAS  Google Scholar 

  54. Klein SL, Marson AL, Scott AL, Ketner G, Glass GE: Neonatal sex steroids affect responses to Seoul virus infection in male but not female Norway rats. Brain Behav Immun 2002;16:736–746.

    Article  PubMed  CAS  Google Scholar 

  55. Angele MK, Schwacha MG, Ayala A, Chaudry IH: Effect of gender and sex hormones on immune responses following shock. Shock 2000;14:81–90.

    PubMed  CAS  Google Scholar 

  56. Roden AC, Moser MT, Tri SD, et al: Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 2004;173:6098–6108.

    PubMed  CAS  Google Scholar 

  57. Wichmann MW, Zellweger R, DeMaso CM, Ayala A, Chaudry IH: Mechanism of immunosuppression in males following trauma-hemorrhage. Critical role of testosterone. Arch Surg 1996;131:1186–1191.

    PubMed  CAS  Google Scholar 

  58. Angele MK, Knoferl MW, Schwacha MG, et al: Sex steroids regulate pro- and anti-inflammatory cytokine release by macrophages after trauma-hemorrhage. Am J Physiol 1999;277:C35-C42.

    PubMed  CAS  Google Scholar 

  59. Lahita RG: Gender and the immune system. J Gend Specif Med 2000;3:19–22.

    PubMed  CAS  Google Scholar 

  60. Lahita RG: Sex hormones and systemic lupus erythematosus. Rheum Dis Clin North Am 2000;26:951–968.

    Article  PubMed  CAS  Google Scholar 

  61. Nicol T, Bilbey DL, Charles LM, Cordingley JL, Venon-Roberts B: Oestrogen: the natural stimulant of body defence. J Endocrinol 1964;30:277–291.

    PubMed  CAS  Google Scholar 

  62. Soucy G, Boivin G, Labrie F, Rivest S: Estradiol is required for a proper immune response to bacterial and viral pathogens in the female brain. J Immunol 2005;174:6391–6398.

    PubMed  CAS  Google Scholar 

  63. Screpanti I, Gulino A, Pasqualini JR: The fetal thymus of guinea pig as an estrogen target organ. Endocrinology 1982;111:1552–1561.

    Article  PubMed  CAS  Google Scholar 

  64. Sorachi K, Kumagai S, Sugita M, Yodoi J, Imura H: Enhancing effect of 17 beta-estradiol on human NK cell activity. Immunol Lett 1993;36:31–35.

    Article  PubMed  CAS  Google Scholar 

  65. Friedman D, Netti F, Schreiber AD: Effect of estradiol and steroid analogues on the clearance of immunoglobulin G-coated erythrocytes. J Clin Invest 1985;75: 162–167.

    PubMed  CAS  Google Scholar 

  66. Vegeto E, Pollio G, Ciana P, Maggi A: Estrogen blocks inducible nitric oxide synthase accumulation in LPS-activated microglia cells. Exp Gerontol 2000;35: 1309–1316.

    Article  PubMed  CAS  Google Scholar 

  67. Vegeto E, Ghisletti S, Meda C, Etteri S, Belcredito S, Maggi A: Regulation of the lipopolysaccharide signal transduction pathway by 17beta-estradiol in macrophage cells. J Steroid Biochem Mol Biol 2004;91:59–66.

    Article  PubMed  CAS  Google Scholar 

  68. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi AT: Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 1995;13:217–226.

    PubMed  CAS  Google Scholar 

  69. Chao TC, Van Alten PJ, Greager JA, Walter RJ: Steroid sex hormones regulate the release of tumor necrosis factor by macrophages. Cell Immunol 1995;160:43–49.

    Article  PubMed  CAS  Google Scholar 

  70. Zuckerman SH, Ahmari SE, Bryan-Poole N, Evans GF, Short L, Glasebrook AL: Estriol: a potent regulator of TNF and IL-6 expression in a murine model of endotoxemia. Inflammation 1996;20:581–597.

    Article  PubMed  CAS  Google Scholar 

  71. Salem ML, Hossain MS, Nomoto K: Mediation of the immunomodulatory effect of beta-estradiol on inflammatory responses by inhibition of recruitment and activation of inflammatory cells and their gene expression of TNF-alpha and IFN-gamma. Int Arch Allergy Immunol 2000;121:235–245.

    Article  PubMed  CAS  Google Scholar 

  72. Liu L, Benten WP, Wang L, et al: Modulation of Leishmania donovani infection and cell viability by testosterone in bone marrow-derived macrophages: signaling via surface binding sites. Steroids 2005;70:604–614.

    Article  PubMed  CAS  Google Scholar 

  73. Liu L, Zhao Y, Wang Y, et al: Testosterone induced Ca2+ influx in bone marrow-derived macrophages via surface binding sites. Methods Find Exp Clin Pharmacol 2005;27:623–628.

    Article  PubMed  CAS  Google Scholar 

  74. Benten WP, Guo Z, Krucken J, Wunderlich F: Rapid effects of androgens in macrophages. Steroids 2004;69:585–590.

    Article  PubMed  CAS  Google Scholar 

  75. Angele MK, Ayala A, Cioffi WG, Bland KI, Chaudry IH. Testosterone: the culprit for producing splenocyte immune depression after trauma hemorrhage. Am J Physiol 1998;274:C1530-C1536.

    PubMed  CAS  Google Scholar 

  76. Angele MK, Ayala A, Monfils BA, Cioffi WG, Bland KI, Chaudry IH: Testosterone and/or low estradiol: normally required but harmful immunologically for males after trauma-hemorrhage. J Trauma 1998;44:78–85.

    Article  PubMed  CAS  Google Scholar 

  77. Fox HS, Bond BL, Parslow TG: Estrogen regulates the IFN-gamma promoter. J Immunol 1991;146:4362–4367.

    PubMed  CAS  Google Scholar 

  78. Green PG, Dahlqvist SR, Isenberg WM, Miao FJ, Levine JD: Role of adrenal medulla in development of sexual dimorphism in inflammation. Eur J Neurosci 2001;14:1436–1444.

    Article  PubMed  CAS  Google Scholar 

  79. Treloar AE: Menstrual cyclicity and the premenopause. Maturitas 1981;3:249–264.

    Article  PubMed  CAS  Google Scholar 

  80. Sherman BM, Korenman SG: Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest 1975;55:699–706.

    Article  PubMed  CAS  Google Scholar 

  81. Metcalf MG: The approach of menopause: a New Zealand study. N Z Med J 1988;101:103–106.

    PubMed  CAS  Google Scholar 

  82. Burger HG: The menopause: when it is all over or is it? Aust N Z J Obstet Gynaecol 1994;34:293–295.

    PubMed  CAS  Google Scholar 

  83. Shideler SE, DeVane GW, Kalra PS, Benirschke K, Lasley BL: Ovarian-pituitary hormone interactions during the perimenopause. Maturitas 1989;11:331–339.

    Article  PubMed  CAS  Google Scholar 

  84. Rannevik G, Jeppsson S, Johnell O, Bjerre B, Laurell-Borulf Y, Svanberg L: A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas 1995;21:103–113.

    Article  PubMed  CAS  Google Scholar 

  85. Calaf i Alsina J: Benefits of hormone replacement therapy— overview and update. Int J Fertil Womens Med 1997;42:329–346.

    PubMed  Google Scholar 

  86. Kahlke V, Angele MK, Schwacha MG, et al: Reversal of sexual dimorphism in splenic T lymphocyte responses after trauma-hemorrhage with aging. Am J Physiol Cell Physiol 2000;278:C509-C516.

    PubMed  CAS  Google Scholar 

  87. De la Fuente M, Baeza I, Guayerbas N, et al: Changes with ageing in several leukocyte functions of male and female rats. Biogerontology 2004;5:389–400.

    Article  PubMed  Google Scholar 

  88. Kamada M, Irahara M, Maegawa M, et al: Effect of hormone replacement therapy on post-menopausal changes of lymphocytes and T cell subsets. J Endocrinol Invest 2000;23:376–382.

    PubMed  CAS  Google Scholar 

  89. Kumru S, Godekmerdan A, Yilmaz B: Immune effects of surgical menopause and estrogen replacement therapy in peri-menopausal women. J Reprod Immunol 2004;63:31–38.

    Article  PubMed  CAS  Google Scholar 

  90. Albrecht AE, Hartmann BW, Scholten C, Huber JC, Kalinowska W, Zielinski CC: Effect of estrogen replacement therapy on natural killer cell activity in postmenopausal women. Maturitas 1996;25:217–222.

    Article  PubMed  CAS  Google Scholar 

  91. Brunelli R, Frasca D, Perrone G, et al: Hormone replacement therapy affects various immune cell subsets and natural cytotoxicity. Gynecol Obstet Invest 1996;41:128–131.

    Article  PubMed  CAS  Google Scholar 

  92. Porter VR, Greendale GA, Schocken M, Zhu X, Effros RB: Immune effects of hormone replacement therapy in post-menopausal women. Exp Gerontol 2001;36:311–326.

    Article  PubMed  CAS  Google Scholar 

  93. Chen TM, Chen YH, Wu CC, Chen CA, Chang CF, Hsieh CY: Factors influencing tumor cell kinetics in cervical cancer. J Cancer Res Clin Oncol 1996;122:504–508.

    Article  PubMed  CAS  Google Scholar 

  94. Meyers BR, Sherman E, Mendelson MH, et al: Blood-stream infections in the elderly. Am J Med 1989;86:379–384.

    Article  PubMed  CAS  Google Scholar 

  95. Beery TA: Sex differences in infection and sepsis. Crit Care Nurs Clin North Am 2003;15:55–62.

    Article  PubMed  Google Scholar 

  96. Wright SD: Toll, a new piece in the puzzle of innate immunity. J Exp Med 1999;189:605–609.

    Article  PubMed  CAS  Google Scholar 

  97. Medzhitov R, Janeway C Jr: The Toll receptor family and microbial recognition. Trends Microbiol 2000;8:452–456

    Article  PubMed  CAS  Google Scholar 

  98. Barton GM, Medzhitov R: Toll-like receptor signaling pathways. Science 2003;300:1524–1525.

    Article  PubMed  CAS  Google Scholar 

  99. Schumann RR, Leong SR, Flaggs GW, et al: Structure and function of lipopolysaccharide binding protein. Science 1990;249:1429–1431.

    Article  PubMed  CAS  Google Scholar 

  100. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  101. Jiang Q, Akashi S, Miyake K, Petty HR: Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000:165:3541–3544.

    PubMed  CAS  Google Scholar 

  102. Poltorak A, He X, Smirnova I, et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  103. Hoshino K, Takeuchi O, Kawai T, et al: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hypore-sponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999;162:3749–3752.

    PubMed  CAS  Google Scholar 

  104. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10689–10692.

    Article  PubMed  CAS  Google Scholar 

  105. Lien E, Means TK, Heine H, et al: Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000;105:497–504.

    PubMed  CAS  Google Scholar 

  106. Palsson-McDermott EM, O'Neill LA: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004;113:153–162.

    Article  PubMed  CAS  Google Scholar 

  107. Kono H, Wheeler MD, Rusyn I, et al: Gender differences in early alcohol-induced liver injury: role of CD14, NF-kappaB, and TNF-alpha. Am J Physiol Gastrointest Liver Physiol 2000;278:G652-G661.

    PubMed  CAS  Google Scholar 

  108. Inaba K, Suzuki S, Ihara H, et al: Sexual dimorphism in endotoxin susceptibility after partial hepatectomy in rats. J Hepatol 2005;42:719–727.

    Article  PubMed  CAS  Google Scholar 

  109. Eisenmenger SJ, Wichmann MW, Angele P, et al: Differences in the expression of LPS-receptors are not responsible for the sex-specific immune response after trauma and hemorrhagic shock. Cell Immunol 2004;230:17–22.

    Article  PubMed  CAS  Google Scholar 

  110. Huber SA: Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role for CD1d. Med Microbiol Immunol (Berl) 2005;194:121–127.

    Article  CAS  Google Scholar 

  111. Morrison LA: The Toll of herpes simplex virus infection. Trends Microbiol 2004;12:353–356.

    Article  PubMed  CAS  Google Scholar 

  112. Boehme KW, Compton T: Innate sensing of viruses by toll-like receptors. J Virol. 2004 78:7867–7873.

    Article  PubMed  CAS  Google Scholar 

  113. Kurt-Jones EA, Chan M, Zhou S, et al: Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA. 2004;101:1315–1320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Marriott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marriott, I., Huet-Hudson, Y.M. Sexual dimorphism in innate immune responses to infectious organisms. Immunol Res 34, 177–192 (2006). https://doi.org/10.1385/IR:34:3:177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:3:177

Key words

Navigation