Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modern therapeutic approaches for the treatment of malignant liver tumours

Abstract

Malignant liver tumours include a wide range of primary and secondary tumours. Although surgery remains the mainstay of curative treatment, modern therapies integrate a variety of neoadjuvant and adjuvant strategies and have achieved dramatic improvements in survival. Extensive tumour loads, which have traditionally been considered unresectable, are now amenable to curative treatment through systemic conversion chemotherapies followed by a variety of interventions such as augmentation of the healthy liver through portal vein occlusion, staged surgeries or ablation modalities. Liver transplantation is established in selected patients with hepatocellular carcinoma but is now emerging as a promising option in many other types of tumour such as perihilar cholangiocarcinomas, neuroendocrine or colorectal liver metastases. In this Review, we summarize the available therapies for the treatment of malignant liver tumours, with an emphasis on surgical and ablative approaches and how they align with other therapies such as modern anticancer drugs or radiotherapy. In addition, we describe three complex case studies of patients with malignant liver tumours. Finally, we discuss the outlook for future treatment, including personalized approaches based on molecular tumour subtyping, response to targeted drugs, novel biomarkers and precision surgery adapted to the specific tumour.

Key points

  • Contraindications for two-stage hepatectomy owing to a small future liver remnant should always be evaluated at expert centres.

  • The minimally invasive resection of selective liver tumours is oncologically efficient and offers faster postoperative recovery than invasive procedures.

  • Ablation therapy is an essential component of the treatment of liver tumours as it enables parenchymal preservation and treatment of high-risk patients and can be applied in combination with liver resection or as a bridge to liver transplantation.

  • Liver transplantation and transplant oncology are evolving as life-saving treatment options for patients with otherwise unresectable liver tumours.

  • Stereotactic body radiotherapy is a non-invasive treatment that achieves local tumour control in challenging situations such as when tumour size is >3 cm and tumour location is close to central vessels and the biliary system.

  • Systemic therapy is used to convert unresectable tumours into resectable tumours, target micrometastatic disease and provide disease control for staged procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liver surgery strategies tailored to specific tumour scenarios.
Fig. 2: Treatment algorithm of CRLM at the Swiss HPB Center, Zurich, Switzerland.
Fig. 3: The RAPID approach for colorectal liver metastases.
Fig. 4: Personalized perioperative treatment for CRLM and ICC based on molecular profiling.

Similar content being viewed by others

References

  1. Clavien, P. A., Petrowsky, H., DeOliveira, M. L. & Graf, R. Strategies for safer liver surgery and partial liver transplantation. N. Engl. J. Med. 356, 1545–1559 (2007). This review indicates the significance of safer strategies in liver surgery and partial liver transplantation and highlights tissue augmentation approaches by portal vein embolization and two-stage hepatectomy.

    Article  PubMed  Google Scholar 

  2. Cabibbo, G., Latteri, F., Antonucci, M. & Craxi, A. Multimodal approaches to the treatment of hepatocellular carcinoma. Nat. Clin. Pract. Gastroenterol. Hepatol. 6, 159–169 (2009).

    Article  PubMed  Google Scholar 

  3. Cassidy, S. & Syed, B. A. Colorectal cancer drugs market. Nat. Rev. Drug Discov. 16, 525–526 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Adam, R. et al. 2018 annual report of the European Liver Transplant Registry (ELTR) - 50-year evolution of liver transplantation. Transpl. Int. 31, 1293–1317 (2018).

    Article  PubMed  Google Scholar 

  5. Bismuth, H. et al. Hepatic transplantation in Europe. First report of the European Liver Transplant Registry. Lancet 2, 674–676 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Sapisochin, G., et al. Transplant oncology in primary and metastatic liver tumor: principles, evidence and opportunities. Ann. Surg. https://doi.org/10.1097/SLA.0000000000004071 (2020).

  7. Ignatavicius, P. et al. Choices of therapeutic strategies for colorectal liver metastases among expert liver surgeons. A throw of the dice? Ann. Surg. https://doi.org/10.1097/SLA.0000000000004331 (2020).

  8. Jarnagin, W. R. et al. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann. Surg. 236, 397–406 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Poon, R. T. et al. Improving perioperative outcome expands the role of hepatectomy in management of benign and malignant hepatobiliary diseases: analysis of 1222 consecutive patients from a prospective database. Ann. Surg. 240, 698–708 (2004).

    PubMed  PubMed Central  Google Scholar 

  10. Smyrniotis, V., Kostopanagiotou, G., Theodoraki, K., Tsantoulas, D. & Contis, J. C. The role of central venous pressure and type of vascular control in blood loss during major liver resections. Am. J. Surg. 187, 398–402 (2004).

    Article  PubMed  Google Scholar 

  11. Pringle, J. H. V. Notes on the arrest of hepatic hemorrhage due to trauma. Ann. Surg. 48, 541–549 (1908).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lesurtel, M., Selzner, M., Petrowsky, H., McCormack, L. & Clavien, P. A. How should transection of the liver be performed?: a prospective randomized study in 100 consecutive patients: comparing four different transection strategies. Ann. Surg. 242, 814–822 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Couinaud, C. Liver lobes and segments: notes on the anatomical architecture and surgery of the liver [In French]. Presse Med. 62, 709–712 (1954).

    CAS  PubMed  Google Scholar 

  14. Frilling, A. & Clift, A. K. Surgical approaches to the management of neuroendocrine liver metastases. Endocrinol. Metab. Clin. North Am. 47, 627–643 (2018).

    Article  PubMed  Google Scholar 

  15. Sano, K. et al. Outcomes of 1,639 hepatectomies for non-colorectal non-neuroendocrine liver metastases: a multicenter analysis. J. Hepatobiliary Pancreat. Sci. 25, 465–475 (2018).

    Article  PubMed  Google Scholar 

  16. Lai, Q. et al. Recurrence of hepatocellular cancer after liver transplantation: the role of primary resection and salvage transplantation in East and West. J. Hepatol. 57, 974–979 (2012).

    Article  PubMed  Google Scholar 

  17. He, S. et al. Effect of prophylactic TACE on 5-year survival of patients with hepatocellular carcinoma after hepatectomy. Oncol. Lett. 18, 1824–1830 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogata, S. et al. Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma. Br. J. Surg. 93, 1091–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Shim, J. H. et al. Complete necrosis after transarterial chemoembolization could predict prolonged survival in patients with recurrent intrahepatic hepatocellular carcinoma after curative resection. Ann. Surg. Oncol. 17, 869–877 (2010).

    Article  PubMed  Google Scholar 

  20. Vigano, L. et al. Minor hepatectomies: focusing a blurred picture: analysis of the outcome of 4471 open resections in patients without cirrhosis. Ann. Surg. 270, 842–851 (2019).

    Article  PubMed  Google Scholar 

  21. Mise, Y. et al. Parenchymal-sparing hepatectomy in colorectal liver metastasis improves salvageability and survival. Ann. Surg. 263, 146–152 (2016).

    Article  PubMed  Google Scholar 

  22. Kobayashi, K. et al. Parenchyma-sparing liver resection for hepatocellular carcinoma in left lateral section is associated with better liver volume recovery. HPB 20, 949–955 (2018).

    Article  PubMed  Google Scholar 

  23. Torzilli, G. et al. Hepatic vein management in a parenchyma-sparing policy for resecting colorectal liver metastases at the caval confluence. Surgery 163, 277–284 (2018).

    Article  PubMed  Google Scholar 

  24. Famularo, S. et al. Long-term oncologic results of anatomic vs. parenchyma-sparing resection for hepatocellular carcinoma. A propensity score-matching analysis. Eur. J. Surg. Oncol. 44, 1580–1587 (2018).

    Article  PubMed  Google Scholar 

  25. Moris, D. et al. Parenchymal-sparing versus anatomic liver resection for colorectal liver metastases: a systematic review. J. Gastrointest. Surg. 21, 1076–1085 (2017).

    Article  PubMed  Google Scholar 

  26. Lordan, J. T. et al. Case-controlled study comparing peri-operative and cancer-related outcomes after major hepatectomy and parenchymal sparing hepatectomy for metastatic colorectal cancer. HPB 19, 688–694 (2017).

    Article  PubMed  Google Scholar 

  27. Kalil, J. A. et al. Laparoscopic parenchymal-sparing hepatectomy: the new maximally minimal invasive surgery of the liver-a systematic review and meta-analysis. J. Gastrointest. Surg. 23, 860–869 (2019).

    Article  PubMed  Google Scholar 

  28. Rous, P. & Larimore, L. D. Relation of the portal blood to liver maintenance: a demonstration of liver atrophy conditional on compensation. J. Exp. Med. 31, 609–632 (1920).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Makuuchi, M. et al. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report. Surgery 107, 521–527 (1990).

    CAS  PubMed  Google Scholar 

  30. Adam, R., Laurent, A., Azoulay, D., Castaing, D. & Bismuth, H. Two-stage hepatectomy: a planned strategy to treat irresectable liver tumors. Ann. Surg. 232, 777–785 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaeck, D. et al. A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann. Surg. 240, 1037–1049 (2004). This article first reported a two-stage hepatectomy strategy combined with portal vein embolization to convert unresectable scenarios into resectable scenarios.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kianmanesh, R. et al. Right portal vein ligation: a new planned two-step all-surgical approach for complete resection of primary gastrointestinal tumors with multiple bilateral liver metastases. J. Am. Coll. Surg. 197, 164–170 (2003).

    Article  PubMed  Google Scholar 

  33. Kawaguchi, Y., Lillemoe, H. A. & Vauthey, J. N. Dealing with an insufficient future liver remnant: portal vein embolization and two-stage hepatectomy. J. Surg. Oncol. 119, 594–603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elias, D. et al. During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma. Br. J. Surg. 86, 784–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Heinrich, S., Jochum, W., Graf, R. & Clavien, P. A. Portal vein ligation and partial hepatectomy differentially influence growth of intrahepatic metastasis and liver regeneration in mice. J. Hepatol. 45, 35–42 (2006).

    Article  PubMed  Google Scholar 

  36. Esposito, F. et al. Combined hepatic and portal vein embolization as preparation for major hepatectomy: a systematic review. HPB 21, 1099–1106 (2019).

    Article  PubMed  Google Scholar 

  37. Chiche, L. et al. Radiological simultaneous porto-hepatic vein embolization (RASPE) before major hepatectomy: a better way to optimize liver hypertrophy compared to portal vein embolization. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003905 (2020).

    Article  PubMed  Google Scholar 

  38. Clavien, P. A. Hepatic vein embolization for safer liver surgery insignificant novelty or a breakthrough? Ann. Surg. https://doi.org/10.1097/SLA.0000000000003973 (2020).

    Article  PubMed  Google Scholar 

  39. Schnitzbauer, A. A. et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann. Surg. 255, 405–414 (2012). This article reports, for the first time, that additional in situ splitting results in rapid and efficient hypertrophy in a two-stage hepatectomy approach.

    Article  PubMed  Google Scholar 

  40. Lang, H. et al. 10th anniversary of ALPPS-lessons learned and quo vadis. Ann. Surg. 269, 114–119 (2019).

    Article  PubMed  Google Scholar 

  41. de Santibanes, E. & Clavien, P. A. Playing Play-Doh to prevent postoperative liver failure: the “ALPPS” approach. Ann. Surg. 255, 415–417 (2012).

    Article  PubMed  Google Scholar 

  42. Linecker, M. et al. Risk adjustment in ALPPS is associated with a dramatic decrease in early mortality and morbidity. Ann. Surg. 266, 779–786 (2017).

    Article  PubMed  Google Scholar 

  43. Wang, Z. et al. Associating liver partition and portal vein ligation for staged hepatectomy for unresectable hepatitis B virus-related hepatocellular carcinoma: a single center study of 45 patients. Ann. Surg. 271, 534–541 (2020).

    Article  PubMed  Google Scholar 

  44. Linecker, M. et al. ALPPS in neuroendocrine liver metastases not amenable for conventional resection - lessons learned from an interim analysis of the International ALPPS Registry. HPB 22, 537–544 (2020).

    Article  PubMed  Google Scholar 

  45. Li, J. et al. ALPPS for locally advanced intrahepatic cholangiocarcinoma: did aggressive surgery lead to the oncological benefit? An international multi-center study. Ann. Surg. Oncol. 27, 1372–1384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Truant, S. et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): impact of the inter-stages course on morbi-mortality and implications for management. Eur. J. Surg. Oncol. 41, 674–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Kremer, M. et al. Impact of neoadjuvant chemotherapy on hypertrophy of the future liver remnant after associating liver partition and portal vein ligation for staged hepatectomy. J. Am. Coll. Surg. 221, 717–728.e1 (2015).

    Article  PubMed  Google Scholar 

  48. Schadde, E. et al. Early survival and safety of ALPPS: first report of the international ALPPS registry. Ann. Surg. 260, 829–836 (2014).

    Article  PubMed  Google Scholar 

  49. Raptis, D. A. et al. Defining Benchmark Outcomes for ALPPS. Ann. Surg. 270, 835–841 (2019).

    Article  PubMed  Google Scholar 

  50. Eshmuminov, D. et al. Meta-analysis of associating liver partition with portal vein ligation and portal vein occlusion for two-stage hepatectomy. Br. J. Surg. 103, 1768–1782 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Sandstrom, P. et al. ALPPS improves resectability compared with conventional two-stage hepatectomy in patients with advanced colorectal liver metastasis: results from a scandinavian multicenter randomized controlled trial (LIGRO Trial). Ann. Surg. 267, 833–840 (2018).

    Article  PubMed  Google Scholar 

  52. Hasselgren, K., Røsok, B. I., Sparrelid, E., Sandström, P. ALPPS improves survival compared with TSH in patients affected of CRLM — survival analysis from the randomized controlled trial LIGRO. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003701 (2019). This randomized trial demonstrates in patients with CRLM significantly superior survival after ALPPS than after two-stage hepatectomy.

  53. Li, J. et al. Avoid “All-Touch” by hybrid ALPPS to achieve oncological efficacy. Ann. Surg. 263, e6–e7 (2016).

    Article  PubMed  Google Scholar 

  54. Linecker, M. et al. How much liver needs to be transected in ALPPS? A translational study investigating the concept of less invasiveness. Surgery 161, 453–464 (2017).

    Article  PubMed  Google Scholar 

  55. Petrowsky, H., Gyori, G., de Oliveira, M., Lesurtel, M. & Clavien, P. A. Is partial-ALPPS safer than ALPPS? A single-center experience. Ann. Surg. 261, e90–e92 (2015).

    Article  PubMed  Google Scholar 

  56. Machado, M. A., Makdissi, F. F. & Surjan, R. C. Totally laparoscopic ALPPS is feasible and may be worthwhile. Ann. Surg. 256, e13 (2012).

    Article  PubMed  Google Scholar 

  57. Robles, R. et al. Tourniquet modification of the associating liver partition and portal ligation for staged hepatectomy procedure. Br. J. Surg. 101, 1129–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. de Santibanes, E., Alvarez, F. A., Ardiles, V., Pekolj, J. & de Santibanes, M. Inverting the ALPPS paradigm by minimizing first stage impact: the Mini-ALPPS technique. Langenbecks Arch. Surg. 401, 557–563 (2016).

    Article  PubMed  Google Scholar 

  59. Rosok, B. I. et al. Characterization of early recurrences following liver resection by ALPPS and two stage hepatectomy in patients with colorectal liver-metastases and small future liver remnants; a translational substudy of the LIGRO-RCT. HPB 21, 1017–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Linecker, M., Kuemmerli, C., Clavien, P. A. & Petrowsky, H. Dealing with insufficient liver remnant: associating liver partition and portal vein ligation for staged hepatectomy. J. Surg. Oncol. 119, 604–612 (2019).

    Article  PubMed  Google Scholar 

  61. Mentha, G. et al. Neoadjuvant chemotherapy and resection of advanced synchronous liver metastases before treatment of the colorectal primary. Br. J. Surg. 93, 872–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Clavien, P. A. & Barkun, J. Consensus conference on laparoscopic liver resection: a jury-based evaluation. Ann. Surg. 261, 630–631 (2015).

    Article  PubMed  Google Scholar 

  63. Wakabayashi, G. et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann. Surg. 261, 619–629 (2015). International Consensus Conference on Laparoscopic Liver Resections to evaluate the current status of laparoscopic liver surgery and to provide recommendations to aid its future development.

    PubMed  Google Scholar 

  64. Abu Hilal, M. et al. The southampton consensus guidelines for laparoscopic liver surgery: from indication to implementation. Ann. Surg. 268, 11–18 (2018).

    Article  PubMed  Google Scholar 

  65. Fruscione, M. et al. Robotic-assisted versus laparoscopic major liver resection: analysis of outcomes from a single center. HPB 21, 906–911 (2019).

    Article  PubMed  Google Scholar 

  66. Fahrner, R. et al. Robotic hepatic surgery in malignancy: review of the current literature. J. Robot. Surg. 13, 533–538 (2019).

    Article  PubMed  Google Scholar 

  67. Kim, J. K. et al. Robotic versus laparoscopic left lateral sectionectomy of liver. Surg. Endosc. 30, 4756–4764 (2016).

    Article  PubMed  Google Scholar 

  68. Salloum, C. et al. Robotic-assisted versus laparoscopic left lateral sectionectomy: analysis of surgical outcomes and costs by a propensity score matched cohort study. World J. Surg. 41, 516–524 (2017).

    Article  PubMed  Google Scholar 

  69. Chen, P. D. et al. Robotic versus open hepatectomy for hepatocellular carcinoma: a matched comparison. Ann. Surg. Oncol. 24, 1021–1028 (2017).

    Article  PubMed  Google Scholar 

  70. Chen, P. D. et al. Robotic major hepatectomy: is there a learning curve? Surgery 161, 642–649 (2017).

    Article  PubMed  Google Scholar 

  71. Barkun, J. S., Dimick, J. B. & Clavien, P. A. Surgical research in patients: ideal time for an IDEAL checklist. Ann. Surg. 269, 208–210 (2019).

    Article  PubMed  Google Scholar 

  72. Hirst, A. et al. No surgical innovation without evaluation: evolution and further development of the IDEAL framework and recommendations. Ann. Surg. 269, 211–220 (2019).

    Article  PubMed  Google Scholar 

  73. Halls, M. C. et al. A comparison of the learning curves of laparoscopic liver surgeons in differing stages of the IDEAL paradigm of surgical innovation: standing on the shoulders of pioneers. Ann. Surg. 269, 221–228 (2019).

    Article  PubMed  Google Scholar 

  74. Rogers, W. A., Hutchison, K. & McNair, A. Ethical issues across the IDEAL stages of surgical innovation. Ann. Surg. 269, 229–233 (2019).

    Article  PubMed  Google Scholar 

  75. Cortolillo, N., Patel, C., Parreco, J., Kaza, S. & Castillo, A. Nationwide outcomes and costs of laparoscopic and robotic vs. open hepatectomy. J. Robot. Surg. 13, 557–565 (2019).

    Article  PubMed  Google Scholar 

  76. Cillo, U. et al. Videolaparoscopic microwave ablation in patients with HCC at a European high-volume center: results of 815 procedures. J. Surg. Oncol. 120, 956–965 (2019).

    Article  PubMed  Google Scholar 

  77. Cornelis, F. H. & Solomon, S. B. Treatment of primary liver tumors and liver metastases, part 2: non-nuclear medicine techniques. J. Nucl. Med. 59, 1801–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giglio, M. C. et al. Laparoscopic versus open thermal ablation of colorectal liver metastases: a propensity score-based analysis of local control of the ablated tumors. Ann. Surg. Oncol. https://doi.org/10.1245/s10434-020-08243-w (2020).

    Article  PubMed  Google Scholar 

  79. Ringe, K. I. et al. Experimental evaluation of the heat sink effect in hepatic microwave ablation. PLoS One 10, e0134301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Schramm, W., Yang, D., Wood, B. J., Rattay, F. & Haemmerich, D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Open Biomed. Eng. J. 1, 47–52 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ahmed, M., Brace, C. L., Lee, F. T. Jr & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–369 (2011).

    Article  PubMed  Google Scholar 

  82. Ding, J. et al. Complications of thermal ablation of hepatic tumours: comparison of radiofrequency and microwave ablative techniques. Clin. Radiol. 68, 608–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Seror, O. Ablative therapies: advantages and disadvantages of radiofrequency, cryotherapy, microwave and electroporation methods, or how to choose the right method for an individual patient? Diagn. Interv. Imaging 96, 617–624 (2015). This article points out the advantages of each ablation technique, highlighting important differences in their technologies and how to transfer this concept into clinical practice.

    Article  CAS  PubMed  Google Scholar 

  84. Adam, R. et al. Concomitant extrahepatic disease in patients with colorectal liver metastases: when is there a place for surgery? Ann. Surg. 253, 349–359 (2011).

    Article  PubMed  Google Scholar 

  85. Loveman, E. et al. The clinical effectiveness and cost-effectiveness of ablative therapies in the management of liver metastases: systematic review and economic evaluation. Health Technol. Assess. 18, 1–283 (2014).

    Article  Google Scholar 

  86. Faitot, F. et al. Two-stage hepatectomy versus 1-stage resection combined with radiofrequency for bilobar colorectal metastases: a case-matched analysis of surgical and oncological outcomes. Ann. Surg. 260, 822–827 (2014). This study compares the long-term follow-up of two surgical strategies for patients with bilobar CRLM. It demonstrates that the one-stage strategy combining resection with radiofrequency ablation is a good option in the treatment of such patients.

    Article  PubMed  Google Scholar 

  87. Park, H. M. et al. Outcomes for patients with recurrent intrahepatic cholangiocarcinoma after surgery. Ann. Surg. Oncol. 23, 4392–4400 (2016).

    Article  PubMed  Google Scholar 

  88. Yin, X. Y. et al. Percutaneous thermal ablation of medium and large hepatocellular carcinoma: long-term outcome and prognostic factors. Cancer 115, 1914–1923 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, M. W. et al. Radiofrequency ablation of hepatocellular carcinoma as bridge therapy to liver transplantation: a 10-year intention-to-treat analysis. Hepatology 65, 1979–1990 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, Y. S. et al. Ten-year outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: analysis of prognostic factors. J. Hepatol. 58, 89–97 (2013).

    Article  PubMed  Google Scholar 

  91. Feng, K. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J. Hepatol. 57, 794–802 (2012).

    Article  PubMed  Google Scholar 

  92. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Davalos, R. V., Mir, I. L. & Rubinsky, B. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33, 223–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Dollinger, M. et al. Bile duct injury after irreversible electroporation of hepatic malignancies: evaluation of MR imaging findings and laboratory values. J. Vasc. Interv. Radiol. 27, 96–103 (2016).

    Article  PubMed  Google Scholar 

  95. Kambakamba, P. et al. Intraoperative adverse events during irreversible electroporation-a call for caution. Am. J. Surg. 212, 715–721 (2016).

    Article  PubMed  Google Scholar 

  96. Scheffer, H. J. et al. Colorectal liver metastatic disease: efficacy of irreversible electroporation–a single-arm phase II clinical trial (COLDFIRE-2 trial). BMC Cancer 15, 772 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cannon, R., Ellis, S., Hayes, D., Narayanan, G. & Martin, R. C. II. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107, 544–549 (2013).

    Article  PubMed  Google Scholar 

  98. Cannon, R. M., Bolus, D. N. & White, J. A. Irreversible electroporation as a bridge to liver transplantation. Am. Surg. 85, 103–110 (2019).

    Article  PubMed  Google Scholar 

  99. Cheng, R. G., Bhattacharya, R., Yeh, M. M. & Padia, S. A. Irreversible electroporation can effectively ablate hepatocellular carcinoma to complete pathologic necrosis. J. Vasc. Interv. Radiol. 26, 1184–1188 (2015).

    Article  PubMed  Google Scholar 

  100. Mafeld, S. et al. Percutaneous irreversible electroporation (IRE) of hepatic malignancy: a bi-institutional analysis of safety and outcomes. Cardiovasc. Intervent. Radiol. 42, 577–583 (2019).

    Article  PubMed  Google Scholar 

  101. Coletti, L. et al. Safety and feasibility of electrochemotherapy in patients with unresectable colorectal liver metastases: a pilot study. Int. J. Surg. 44, 26–32 (2017).

    Article  PubMed  Google Scholar 

  102. Gasljevic, G. et al. Histopathological findings in colorectal liver metastases after electrochemotherapy. PLoS One 12, e0180709 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Funovics, J. M. et al. Primary hepatic cancer – the role of limited resection and total hepatectomy with orthotopic liver replacement. Hepatogastroenterology 35, 316–320 (1988).

    CAS  PubMed  Google Scholar 

  104. Moris, D. et al. Liver transplantation for unresectable colorectal liver metastases: a systematic review. J. Surg. Oncol. 116, 288–297 (2017).

    Article  PubMed  Google Scholar 

  105. Rosenbrook, W. Jr & Carney, R. E. Spectinomycin modification. I 7-EPI-9-deoxy-4(R)-dihydrospectinomycin. J. Antibiot. 28, 953–959 (1975).

    Article  CAS  Google Scholar 

  106. Bismuth, H., Majno, P. E. & Adam, R. Liver transplantation for hepatocellular carcinoma. Semin. Liver Dis. 19, 311–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Mazzaferro, V. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 334, 693–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Clavien, P. A. et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol. 13, e11–e22 (2012).

    Article  PubMed  Google Scholar 

  109. Wang, Z. Y., Geng, L. & Zheng, S. S. Current strategies for preventing the recurrence of hepatocellular carcinoma after liver transplantation. Hepatobiliary Pancreat. Dis. Int. 14, 145–149 (2015).

    Article  PubMed  Google Scholar 

  110. Sapisochin, G. & Bruix, J. Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. Nat. Rev. Gastroenterol. Hepatol. 14, 203–217 (2017).

    Article  PubMed  Google Scholar 

  111. Yao, F. Y. et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 33, 1394–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Yao, F. Y. et al. Liver transplantation for hepatocellular carcinoma: validation of the UCSF-expanded criteria based on preoperative imaging. Am. J. Transpl. 7, 2587–2596 (2007).

    Article  CAS  Google Scholar 

  113. Yang, J. D. et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Muller, M., Bird, T. G. & Nault, J. C. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J. Hepatol. 72, 990–1002 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    Article  PubMed  Google Scholar 

  116. Ma, X. L. et al. Significance of PIVKA-II levels for predicting microvascular invasion and tumor cell proliferation in Chinese patients with hepatitis B virus-associated hepatocellular carcinoma. Oncol. Lett. 15, 8396–8404 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Mazzaferro, V. et al. Metroticket 2.0 model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma. Gastroenterology 154, 128–139 (2018).

    Article  PubMed  Google Scholar 

  118. Cescon, M., Cucchetti, A., Ravaioli, M. & Pinna, A. D. Hepatocellular carcinoma locoregional therapies for patients in the waiting list. Impact on transplantability and recurrence rate. J. Hepatol. 58, 609–618 (2013).

    Article  PubMed  Google Scholar 

  119. Lesurtel, M., Mullhaupt, B., Pestalozzi, B. C., Pfammatter, T. & Clavien, P. A. Transarterial chemoembolization as a bridge to liver transplantation for hepatocellular carcinoma: an evidence-based analysis. Am. J. Transpl. 6, 2644–2650 (2006).

    Article  CAS  Google Scholar 

  120. Hassoun, Z., Gores, G. J. & Rosen, C. B. Preliminary experience with liver transplantation in selected patients with unresectable hilar cholangiocarcinoma. Surg. Oncol. Clin. N. Am. 11, 909–921 (2002).

    Article  PubMed  Google Scholar 

  121. Rosen, C. B., Heimbach, J. K. & Gores, G. J. Liver transplantation for cholangiocarcinoma. Transpl. Int. 23, 692–697 (2010).

    Article  PubMed  Google Scholar 

  122. Darwish Murad, S. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 143, 88–98.e3 (2012).

    Article  PubMed  Google Scholar 

  123. Ethun, C. G. et al. Transplantation versus resection for hilar cholangiocarcinoma: an argument for shifting treatment paradigms for resectable disease. Ann. Surg. 267, 797–805 (2018). The first intention-to-treat analysis in hilar cholangiocarcinoma to compare liver resection with liver transplantation in patients with the same tumour criteria (that is, <3 cm, lymph-node negative disease).

    Article  PubMed  Google Scholar 

  124. Resch, T. et al. Liver transplantation for hilar cholangiocarcinoma (h-CCA): is it the right time? Transl. Gastroenterol. Hepatol. 3, 38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sapisochin, G., Fernandez de Sevilla, E., Echeverri, J. & Charco, R. Liver transplantation for cholangiocarcinoma: current status and new insights. World J. Hepatol. 7, 2396–2403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sapisochin, G. et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: international retrospective study supporting a prospective assessment. Hepatology 64, 1178–1188 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Sapisochin, G. et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: should liver transplantation be reconsidered in these patients? Am. J. Transpl. 14, 660–667 (2014).

    Article  CAS  Google Scholar 

  128. Lunsford, K. E. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol. Hepatol. 3, 337–348 (2018).

    Article  PubMed  Google Scholar 

  129. Fujita, T. Liver transplantation for intrahepatic cholangiocarcinoma. Lancet 384, 1182 (2014).

    Article  PubMed  Google Scholar 

  130. Hagness, M. et al. Liver transplantation for nonresectable liver metastases from colorectal cancer. Ann. Surg. 257, 800–806 (2013).

    Article  PubMed  Google Scholar 

  131. Line, P. D., Hagness, M., Berstad, A. E., Foss, A. & Dueland, S. A novel concept for partial liver transplantation in nonresectable colorectal liver metastases: the RAPID concept. Ann. Surg. 262, e5–e9 (2015). First report of RAPID, which combines regeneration of partial liver grafts followed by delayed resection of the remaining metastatic liver part.

    Article  PubMed  Google Scholar 

  132. Frilling, A. et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 15, e8–e21 (2014).

    Article  PubMed  Google Scholar 

  133. Lim, C. et al. Liver transplantation for neuroendocrine tumors: what have we learned? Semin. Liver Dis. 38, 351–356 (2018).

    Article  PubMed  Google Scholar 

  134. Richards-Taylor, S. et al. Clinically significant differences in Ki-67 proliferation index between primary and metastases in resected pancreatic neuroendocrine tumors. Pancreas 46, 1354–1358 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Dawson, L. A. et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int. J. Radiat. Oncol. Biol. Phys. 53, 810–821 (2002).

    Article  PubMed  Google Scholar 

  136. Wulf, J. et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 45, 838–847 (2006).

    Article  PubMed  Google Scholar 

  137. Guckenberger, M. et al. Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther. Onkol. 190, 26–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Lax, I., Blomgren, H., Naslund, I. & Svanstrom, R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 33, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Chang, D. T. et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer 117, 4060–4069 (2011).

    Article  PubMed  Google Scholar 

  140. Hoyer, M. et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 45, 823–830 (2006).

    Article  PubMed  Google Scholar 

  141. van der Pool, A. E. et al. Stereotactic body radiation therapy for colorectal liver metastases. Br. J. Surg. 97, 377–382 (2010).

    Article  PubMed  Google Scholar 

  142. Scorsetti, M. et al. Final results of a phase II trial for stereotactic body radiation therapy for patients with inoperable liver metastases from colorectal cancer. J. Cancer Res. Clin. Oncol. 141, 543–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Petrelli, F. et al. Stereotactic body radiotherapy for colorectal cancer liver metastases: a systematic review. Radiother. Oncol. 129, 427–434 (2018). Systematic review of SBRT for CRC liver metastases showing an association between SBRT dose and local metastases control.

    Article  PubMed  Google Scholar 

  144. Klement, R. J. et al. The impact of local control on overall survival after stereotactic body radiotherapy for liver and lung metastases from colorectal cancer: a combined analysis of 388 patients with 500 metastases. BMC Cancer 19, 173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Toesca, D. A. et al. Central liver toxicity after SBRT: an expanded analysis and predictive nomogram. Radiother. Oncol. 122, 130–136 (2017).

    Article  PubMed  Google Scholar 

  146. Xi, M. et al. Effectiveness of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombosis. PLoS One 8, e63864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016).

    Article  PubMed  Google Scholar 

  148. Kroeze, S. G. et al. Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: a systematic review. Cancer Treat. Rev. 53, 25–37 (2017).

    Article  PubMed  Google Scholar 

  149. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Vogel, A. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 871–873 (2019).

    Article  PubMed  Google Scholar 

  152. Bujold, A. et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J. Clin. Oncol. 31, 1631–1639 (2013).

    Article  PubMed  Google Scholar 

  153. Takeda, A. et al. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer 122, 2041–2049 (2016).

    Article  PubMed  Google Scholar 

  154. Bettinger, D. et al. Stereotactic body radiation therapy as an alternative treatment for patients with hepatocellular carcinoma compared to sorafenib: a propensity score analysis. Liver Cancer 8, 281–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Yoon, S. M. et al. Efficacy and safety of transarterial chemoembolization plus external beam radiotherapy vs sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: a randomized clinical trial. JAMA Oncol. 4, 661–669 (2018). Randomized trial showing an overall survival benefit of TACE combined with SBRT compared to sorafenib in patients with advanced HCC showing macroscopic vascular invasion.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Uemura, T. et al. Stereotactic body radiation therapy: a new strategy for loco-regional treatment for hepatocellular carcinoma while awaiting liver transplantation. World J. Surg. 43, 886–893 (2019).

    Article  PubMed  Google Scholar 

  157. Sapisochin, G. et al. Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis. J. Hepatol. 67, 92–99 (2017).

    Article  PubMed  Google Scholar 

  158. Wei, X. et al. Neoadjuvant three-dimensional conformal radiotherapy for resectable hepatocellular carcinoma with portal vein tumor thrombus: a randomized, open-label, multicenter controlled study. J. Clin. Oncol. 37, 2141–2151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mahadevan, A. et al. Stereotactic body radiotherapy (SBRT) for intrahepatic and hilar cholangiocarcinoma. J. Cancer 6, 1099–1104 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gkika, E. et al. Stereotactic body radiotherapy (SBRT) for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. BMC Cancer 17, 781 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Feng, M. et al. Individualized adaptive stereotactic body radiotherapy for liver tumors in patients at high risk for liver damage: a phase 2 clinical trial. JAMA Oncol. 4, 40–47 (2018).

    Article  PubMed  Google Scholar 

  162. Frakulli, R. et al. Stereotactic body radiation therapy in cholangiocarcinoma: a systematic review. Br. J. Radiol. 92, 20180688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mancini, R. et al. A multicentric phase II clinical trial on intra-arterial hepatic radiotherapy with 90yttrium SIR-spheres in unresectable, colorectal liver metastases refractory to i.v. chemotherapy: preliminary results on toxicity and response rates. In Vivo 20, 711–714 (2006).

    CAS  PubMed  Google Scholar 

  164. Bhooshan, N. et al. Pretreatment tumor volume as a prognostic factor in metastatic colorectal cancer treated with selective internal radiation to the liver using yttrium-90 resin microspheres. J. Gastrointest. Oncol. 7, 931–937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Fendler, W. P. et al. Nomogram including pretherapeutic parameters for prediction of survival after SIRT of hepatic metastases from colorectal cancer. Eur. Radiol. 25, 2693–2700 (2015).

    Article  PubMed  Google Scholar 

  166. Wasan, H. S. et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 18, 1159–1171 (2017). Pooled analysis of three randomized trials showing that the addition of SIRT to first-line FOLFOX chemotherapy for patients with liver-only and liver-dominant mCRC did not improve overall survival compared with FOLFOX alone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chow, P. K. H. et al. SIRveNIB: selective internal radiation therapy versus sorafenib in asia-pacific patients with hepatocellular carcinoma. J. Clin. Oncol. 36, 1913–1921 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Vilgrain, V. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 18, 1624–1636 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Braat, A. et al. Radioembolization with (90)Y resin microspheres of neuroendocrine liver metastases: international multicenter study on efficacy and toxicity. Cardiovasc. Intervent. Radiol. 42, 413–425 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Lehmann, K., Rickenbacher, A., Weber, A., Pestalozzi, B. C. & Clavien, P. A. Chemotherapy before liver resection of colorectal metastases: friend or foe? Ann. Surg. 255, 237–247 (2012).

    Article  PubMed  Google Scholar 

  171. Nordlinger, B. et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 371, 1007–1016 (2008). The EPOC trial set the standard for perioperative treatment of technically resectable CRLM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Primrose, J. et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the new EPOC randomised controlled trial. Lancet Oncol. 15, 601–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Valle, J. W. et al. Biliary cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27 (Suppl. 5), v28–v37 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Primrose, J.N. et al. Adjuvant capecitabine for biliary tract cancer: The BILCAP randomized study. J. Clin. Oncol. 35, 4006–4006 (2017).

    Article  Google Scholar 

  175. Stein, A. et al. Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial) - a randomized, multidisciplinary, multinational phase III trial. BMC Cancer 15, 564 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 16, 1344–1354 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Meyer, T. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 565–575 (2017).

    Article  PubMed  Google Scholar 

  178. Ricke, J. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J. Hepatol. 71, 1164–1174 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Zhu, X. D. & Sun, H. C. Emerging agents and regimens for hepatocellular carcinoma. J. Hematol. Oncol. 12, 110 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Duffy, A. G. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 66, 545–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Greten, T. F., Mauda-Havakuk, M., Heinrich, B., Korangy, F. & Wood, B. J. Combined locoregional-immunotherapy for liver cancer. J. Hepatol. 70, 999–1007 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pavel, M. et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 103, 172–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Kaltsas, G. et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pre- and perioperative therapy in patients with neuroendocrine tumors. Neuroendocrinology 105, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Strosberg, J. et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Partelli, S. et al. Peptide receptor radionuclide therapy as neoadjuvant therapy for resectable or potentially resectable pancreatic neuroendocrine neoplasms. Surgery 163, 761–767 (2018).

    Article  PubMed  Google Scholar 

  186. Adam, R. et al. Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus. Cancer Treat. Rev. 41, 729–741 (2015).

    Article  PubMed  Google Scholar 

  187. Folprecht, G. et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol. 11, 38–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Adam, R. et al. The oncosurgery approach to managing liver metastases from colorectal cancer: a multidisciplinary international consensus. Oncologist 17, 1225–1239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ye, L. C. et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J. Clin. Oncol. 31, 1931–1938 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Gruenberger, T. et al. Bevacizumab plus mFOLFOX-6 or FOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Ann. Oncol. 26, 702–708 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Geissler, M. et al. mFOLFOXIRI + panitumumab versus FOLFOXIRI as first-line treatment in patients with RAS wild-type metastatic colorectal cancer m(CRC): a randomized phase II VOLFI trial of the AIO (AIO- KRK0109). J. Clin. Oncol. 36, 3509–3509 (2018).

    Article  Google Scholar 

  192. Cremolini, C. et al. Activity and safety of cetuximab plus modified FOLFOXIRI followed by maintenance with cetuximab or bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a randomized phase 2 clinical trial JAMA Oncol. 4, 529–536 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Heinemann, V. et al. Early tumour shrinkage (ETS) and depth of response (DpR) in the treatment of patients with metastatic colorectal cancer (mCRC). Eur. J. Cancer 51, 1927–1936 (2015).

    Article  PubMed  Google Scholar 

  194. Shindoh, J. et al. Optimal future liver remnant in patients treated with extensive preoperative chemotherapy for colorectal liver metastases. Ann. Surg. Oncol. 20, 2493–2500 (2013).

    Article  PubMed  Google Scholar 

  195. Chun, Y. S., Laurent, A., Maru, D. & Vauthey, J. N. Management of chemotherapy-associated hepatotoxicity in colorectal liver metastases. Lancet Oncol. 10, 278–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Dienstmann, R., Salazar, R. & Tabernero, J. Molecular subtypes and the evolution of treatment decisions in metastatic colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book 38, 231–238 (2018). This article provides an up-to-date overview of molecular subtyping and personalized systemic treatment of mCRC.

    Article  PubMed  Google Scholar 

  197. Arnold, D. et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 28, 1713–1729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pietrantonio, F. et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur. J. Cancer 51, 587–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Kopetz, S. et al. Updated results of the BEACON CRC safety lead-in: encorafenib (ENCO) + binimetinib (BINI) + cetuximab (CETUX) for BRAFV600E-mutant metastatic colorectal cancer (mCRC). J. Clin. Oncol. 37, 688–688 (2019).

    Article  Google Scholar 

  201. Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Raghav, R. et al. Validation of HER2 amplification as a predictive biomarker for anti–epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. JCO Precision Oncol. 3, 1–13 (2019).

    Google Scholar 

  203. Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Le, D. et al. Safety and antitumor activity of pembrolizumab in patients with advanced microsatellite instability–high (MSI-H) colorectal cancer: KEYNOTE-164. Ann. Oncol. 29 (Suppl. 5), V107 (2018).

    Article  Google Scholar 

  205. Lenz, H.-J. J. et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann. Oncol. 29 (Suppl. 8), VIII714 (2018).

    Article  Google Scholar 

  206. Le Roy, B. et al. Neoadjuvant chemotherapy initially unresectable intrahepatic cholangiocarcinoma. Br. J. Surg. 105, 839–847 (2018).

    Article  PubMed  Google Scholar 

  207. Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wainberg, Z. A. et al. Efficacy and safety of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E–mutated biliary tract cancer (BTC): a cohort of the ROAR basket trial. J. Clin. Oncol. 37, 187–187 (2019).

    Article  Google Scholar 

  209. Abou-Alfa, G. K. ClarIDHy: a global, phase III, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutatio. Ann. Oncol. 30, v872–v873 (2019).

    Article  Google Scholar 

  210. Vogel, A. FIGHT-202: A phase II study of pemigatinib in patients (pts) with previously treated locally advanced or metastatic cholangiocarcinoma (CCA). Ann. Oncol. 30, v876 (2019).

    Article  Google Scholar 

  211. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Ikeda, M. et al. Abstract CT061: a phase Ib trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) in unresectable hepatocellular carcinoma (uHCC): updated results. Cancer Res. 79, CT061–CT061 (2019).

    Google Scholar 

  213. Llovet, J. M. et al. Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): phase 3 LEAP-002 study. J. Clin. Oncol. 37, TPS4152 (2019).

    Article  Google Scholar 

  214. Cheng, A.-L. LBA3 – IMbrave150: Efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Ann. Oncol. 30 (Suppl. 9), ix186–ix187 (2019).

    Article  Google Scholar 

  215. Samaras, P. et al. Selective intra-arterial chemotherapy with floxuridine as second- or third-line approach in patients with unresectable colorectal liver metastases. Ann. Surg. Oncol. 18, 1924–1931 (2011).

    Article  PubMed  Google Scholar 

  216. Konstantinidis, I. T. et al. Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 122, 758–765 (2016).

    Article  PubMed  Google Scholar 

  217. Cucchetti, A. et al. Selective internal radiation therapy (SIRT) as conversion therapy for unresectable primary liver malignancies. Liver Cancer 5, 303–311 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Fong, Y., Fortner, J., Sun, R. L., Brennan, M. F. & Blumgart, L. H. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann. Surg. 230, 309–318 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nordlinger, B. et al. Surgical resection of colorectal carcinoma metastases to the liver: A prognostic scoring system to improve case selection, based on 1568 patients. Cancer 77, 1254–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  220. Mann, C. D., Metcalfe, M. S., Leopardi, L. N. & Maddern, G. J. The clinical risk score: emerging as a reliable preoperative prognostic index in hepatectomy for colorectal metastases. Arch. Surg. 139, 1168–1172 (2004).

    Article  PubMed  Google Scholar 

  221. Balachandran, V. P. et al. A validated prognostic multigene expression assay for overall survival in resected colorectal cancer liver metastases. Clin. Cancer Res. 22, 2575–2582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pitroda, S. P. et al. Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat. Commun. 9, 1793 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Mlecnik, B. et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl Med. 8, 327ra326 (2016).

    Article  CAS  Google Scholar 

  224. Tie, J. et al. Serial circulating tumor DNA (ctDNA) and recurrence risk in patients (pts) with resectable colorectal liver metastasis (CLM). J. Clin. Oncol. 34, e15131 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gaal for her dedication and very efficient work during the editorial process. The authors are supported by the Liver and Gastrointestinal Disease Foundation (LGID), Switzerland, and the Swiss National Foundation Grant ‘Division of tasks in the regenerating liver — metabolic restraints to successful recovery after tissue loss’.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Pierre-Alain Clavien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrowsky, H., Fritsch, R., Guckenberger, M. et al. Modern therapeutic approaches for the treatment of malignant liver tumours. Nat Rev Gastroenterol Hepatol 17, 755–772 (2020). https://doi.org/10.1038/s41575-020-0314-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0314-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing