Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy for advanced thyroid cancers — rationale, current advances and future strategies

Abstract

In the past decade, the field of cancer immunotherapy has been revolutionized by immune checkpoint blockade (ICB) technologies. Success across a broad spectrum of cancers has led to a paradigm shift in therapy for patients with advanced cancer. Early data are now accumulating in progressive thyroid cancers treated with single-agent ICB therapies and combination approaches that incorporate ICB technologies. This Review discusses our current knowledge of the immune response in thyroid cancers, the latest and ongoing immune-based approaches, and the future of immunotherapies in thyroid cancer. Physiologically relevant preclinical mouse models and human correlative research studies will inform development of the next stage of immune-based therapies for patients with advanced thyroid cancer.

Key points

  • Despite advances in treatment strategies, patients with advanced thyroid cancers would benefit from novel therapies.

  • Advanced thyroid cancers are commonly infiltrated by immune cells, including CD8+ T cells, but little is known about the tumour-specific T cell response.

  • A subset of patients has received clinical benefit from immune checkpoint blockade therapies; however, the majority achieve only a partial response.

  • Novel combination therapies that target both the tumour and the immune response are under investigation.

  • Additional studies are necessary to better understand the potential of the antitumour immune response and T cell-based therapies for patients with advanced thyroid cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms of combination therapies that incorporate anti-PD1 or anti-PDL1 immune checkpoint blockades.

Similar content being viewed by others

References

  1. Howlader, N., et al. (eds) SEER Cancer Statistics Review, 1975–2013. National Cancer Institute: Surveillance Epidemiology, and End Results Program http://seer.cancer.gov/csr/1975_2013/ (2016).

  2. Lim, H., Devesa, S. S., Sosa, J. A., Check, D. & Kitahara, C. M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 317, 1338–1348 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Mazzaferri, E. L. & Kloos, R. T. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab. 86, 1447–1463 (2001).

    CAS  PubMed  Google Scholar 

  4. Elisei, R. & Pinchera, A. Advances in the follow-up of differentiated or medullary thyroid cancer. Nat. Rev. Endocrinol. 8, 466–475 (2012).

    CAS  PubMed  Google Scholar 

  5. Franc, S. et al. Complete surgical lymph node resection does not prevent authentic recurrences of medullary thyroid carcinoma. Clin. Endocrinol. 55, 403–409 (2001).

    CAS  Google Scholar 

  6. Lin, B. et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am. J. Transl Res. 11, 5888–5896 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Busaidy, N. L. & Cabanillas, M. E. Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease. J. Thyroid Res. 2012, 618985 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Durante, C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006).

    CAS  PubMed  Google Scholar 

  9. Schlumberger, M. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2, 356–358 (2014).

    PubMed  Google Scholar 

  10. Haugen, B. R. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Smallridge, R. C. et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 22, 1104–1139 (2012).

    PubMed  Google Scholar 

  12. Wells, S. A. Jr. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25, 567–610 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Albero, A., Lopez, J. E., Torres, A., de la Cruz, L. & Martin, T. Effectiveness of chemotherapy in advanced differentiated thyroid cancer: a systematic review. Endocr. Relat. Cancer 23, R71–R84 (2016).

    CAS  PubMed  Google Scholar 

  14. Harris, P. J. & Bible, K. C. Emerging therapeutics for advanced thyroid malignancies: rationale and targeted approaches. Expert. Opin. Investig. Drugs 20, 1357–1375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    PubMed  Google Scholar 

  18. Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    CAS  PubMed  Google Scholar 

  19. Subbiah, V. et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol. 36, 7–13 (2018).

    CAS  PubMed  Google Scholar 

  20. Pozdeyev, N. et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin. Cancer Res. 24, 3059–3068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Adnane, L., Trail, P. A., Taylor, I. & Wilhelm, S. M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 407, 597–612 (2006).

    CAS  PubMed  Google Scholar 

  22. Okamoto, K. et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 340, 97–103 (2013).

    CAS  PubMed  Google Scholar 

  23. Tohyama, O. et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 638747 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Yamamoto, Y. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 6, 18 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Bible, K. C. et al. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 97, 3179–3184 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Savvides, P. et al. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid 23, 600–604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sosa, J. A. et al. Randomized safety and efficacy study of fosbretabulin with paclitaxel/carboplatin against anaplastic thyroid carcinoma. Thyroid 24, 232–240 (2014).

    CAS  PubMed  Google Scholar 

  28. Takahashi, S. et al. A phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol. 15, 717–726 (2019).

    CAS  PubMed  Google Scholar 

  29. Romei, C., Ciampi, R. & Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 12, 192–202 (2016).

    CAS  PubMed  Google Scholar 

  30. Subbiah, V., Yang, D., Velcheti, V., Drilon, A. & Meric-Bernstam, F. State-of-the-art strategies for targeting RET-dependent cancers. J. Clin. Oncol. 38, 1209–1221 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Moura, M. M. et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br. J. Cancer 100, 1777–1783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    CAS  PubMed  Google Scholar 

  34. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  35. Baitsch, L. et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS ONE 7, e30852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Legat, A., Speiser, D. E., Pircher, H., Zehn, D. & Fuertes Marraco, S. A. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front. Immunol. 4, 455 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    CAS  PubMed  Google Scholar 

  40. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kelderman, S., Schumacher, T. N. & Kvistborg, P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 28, 11–13 (2015).

    CAS  PubMed  Google Scholar 

  46. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer, C. et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother. 63, 247–257 (2014).

    CAS  PubMed  Google Scholar 

  54. Tarhini, A. A. et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9, e87705 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Weber, R. et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 9, 1310 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl Med. 10, eaan3311 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gajewski, T. F. et al. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv. Exp. Med. Biol. 1036, 19–31 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    CAS  PubMed  Google Scholar 

  60. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. French, J. D., Bible, K., Spitzweg, C., Haugen, B. R. & Ryder, M. Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol. 5, 469–481 (2016).

    PubMed  Google Scholar 

  62. French, J. D. et al. Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J. Clin. Endocrinol. Metab. 95, 2325–2333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bastman, J. J. et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 101, 2863–2873 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cunha, L. L. et al. Infiltration of a mixture of different immune cells may be related to molecular profile of differentiated thyroid cancer. Endocr. Relat. Cancer 19, L31–L36 (2012).

    CAS  PubMed  Google Scholar 

  65. Rosenbaum, M. W. et al. PD-L1 and IDO1 are expressed in poorly differentiated thyroid carcinoma. Endocr. Pathol. 29, 59–67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bongiovanni, M. et al. Very low expression of PD-L1 in medullary thyroid carcinoma. Endocr. Relat. Cancer 24, L35–L38 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dadu, R. et al. Immune markers in medullary thyroid cancer (MTC) and their clinical significance [abstract 491]. Thyroid 25 (Suppl. 1), A-195–A-196 (2015).

    Google Scholar 

  68. Pozdeyev, N. et al. Comprehensive immune profiling of medullary thyroid cancer. Thyroid https://doi.org/10.1089/thy.2019.0604 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Giannini, R. et al. Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-like and a PDTC-like. J. Clin. Endocrinol. Metab. 104, 3557–3575 (2019).

    PubMed  Google Scholar 

  71. Rashidian, M. et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214, 2243–2255 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04029181 (2019).

  73. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharkey, M. S., Lizee, G., Gonzales, M. I., Patel, S. & Topalian, S. L. CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res. 64, 1595–1599 (2004).

    CAS  PubMed  Google Scholar 

  75. Veatch, J. R. et al. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Invest. 128, 1563–1568 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 (2018).

    CAS  PubMed  Google Scholar 

  78. Eustatia-Rutten, C. F. et al. Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin. Endocrinol. 61, 61–74 (2004).

    CAS  Google Scholar 

  79. Robbins, R. J. et al. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J. Clin. Endocrinol. Metab. 89, 6010–6016 (2004).

    CAS  PubMed  Google Scholar 

  80. Caballero, Y. et al. The value of thyroperoxidase as a prognostic factor for differentiated thyroid cancer – a long-term follow-up study. Thyroid. Res. 8, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Fabbro, D. et al. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res. 54, 4744–4749 (1994).

    CAS  PubMed  Google Scholar 

  82. Ehlers, M. et al. Epitope-specific antitumor immunity suppresses tumor spread in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 102, 2154–2161 (2016).

    Google Scholar 

  83. Rocklin, R. E., Gagel, R., Feldman, Z. & Tashjian, A. H. Jr. Cellular immune responses in familial medullary thyroid carcinoma. N. Engl. J. Med. 296, 835–838 (1977).

    CAS  PubMed  Google Scholar 

  84. George, J. M., Williams, M. A., Almoney, R. & Sizemore, G. Medullary carcinoma of the thyroid. Cellular immune response to tumor antigen in a heritable human cancer. Cancer 36, 1658–1661 (1975).

    CAS  PubMed  Google Scholar 

  85. Bachleitner-Hofmann, T. et al. Pilot trial of autologous dendritic cells loaded with tumor lysate(s) from allogeneic tumor cell lines in patients with metastatic medullary thyroid carcinoma. Oncol. Rep. 21, 1585–1592 (2009).

    CAS  PubMed  Google Scholar 

  86. Schott, M. et al. Calcitonin-specific antitumor immunity in medullary thyroid carcinoma following dendritic cell vaccination. Cancer Immunol. Immunother. 51, 663–668 (2002).

    CAS  PubMed  Google Scholar 

  87. Schott, M. et al. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J. Clin. Endocrinol. Metab. 86, 4965–4969 (2001).

    CAS  PubMed  Google Scholar 

  88. Nikiforova, M. N., Wald, A. I., Roy, S., Durso, M. B. & Nikiforov, Y. E. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J. Clin. Endocrinol. Metab. 98, E1852–E1860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garrido, F., Ruiz-Cabello, F. & Aptsiauri, N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol. Immunother. 66, 259–271 (2017).

    CAS  PubMed  Google Scholar 

  90. Carretero, R. et al. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int. J. Cancer 131, 387–395 (2012).

    CAS  PubMed  Google Scholar 

  91. Garrido, F., Cabrera, T. & Aptsiauri, N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int. J. Cancer 127, 249–256 (2010).

    CAS  PubMed  Google Scholar 

  92. Angell, T. E., Lechner, M. G., Jang, J. K., LoPresti, J. S. & Epstein, A. L. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin. Cancer Res. 20, 6034–6044 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Severson, J. J. et al. PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunol. Res. 3, 620–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi, X. et al. Association between programmed death-ligand 1 expression and clinicopathological characteristics, structural recurrence, and biochemical recurrence/persistent disease in medullary thyroid carcinoma. Thyroid 29, 1269–1278 (2019).

    CAS  PubMed  Google Scholar 

  95. Chowdhury, S. et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget 7, 32318–32328 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Angell, T. E. et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid 24, 1385–1393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chintakuntlawar, A. V. et al. Expression of PD-1 and PD-L1 in anaplastic thyroid cancer patients treated with multimodal therapy: results from a retrospective study. J. Clin. Endocrinol. Metab. 102, 1943–1950 (2017).

    PubMed  Google Scholar 

  98. Taube, J. M. et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra37 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. Feng, D. et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 38, 6752–6766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl Acad. Sci. USA 105, 20852–20857 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    CAS  PubMed  Google Scholar 

  102. Gogali, F. et al. Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the papillary carcinoma of thyroid. J. Clin. Endocrinol. Metab. 97, 1474–1482 (2012).

    CAS  PubMed  Google Scholar 

  103. French, J. D. et al. Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 97, E934–E943 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Qing, W. et al. Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid 22, 905–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ryder, M., Ghossein, R. A., Ricarte-Filho, J. C., Knauf, J. A. & Fagin, J. A. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15, 1069–1074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Caillou, B. et al. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS ONE 6, e22567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Marvel, D. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Invest. 125, 3356–3364 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Damuzzo, V. et al. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin. Cytom. 88, 77–91 (2015).

    CAS  PubMed  Google Scholar 

  109. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Angell, T. E. et al. Circulating myeloid-derived suppressor cells predict differentiated thyroid cancer diagnosis and extent. Thyroid 26, 381–389 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Suzuki, S. et al. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer. Mol. Clin. Oncol. 1, 959–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mehnert, J. M. et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer 19, 196 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Capdevila, J. et al. PD-1 blockade in anaplastic thyroid carcinoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.19.02727 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03246958 (2019).

  115. Kollipara, R., Schneider, B., Radovich, M., Babu, S. & Kiel, P. J. Exceptional response with immunotherapy in a patient with anaplastic thyroid cancer. Oncologist 22, 1149–1151 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Iyer, P. C. et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J. Immunother. Cancer 6, 68 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Wang, J. R. et al. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF(V600E)-mutated anaplastic thyroid carcinoma. Thyroid 29, 1036–1043 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04061980 (2020).

  119. Bradley, S. D. et al. BRAFV600E co-opts a conserved MHC class I internalization pathway to diminish antigen presentation and CD8+ T-cell recognition of melanoma. Cancer Immunol. Res. 3, 602–609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sumimoto, H., Imabayashi, F., Iwata, T. & Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203, 1651–1656 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chintakuntlawar, A. et al. A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer. Thyroid 29, 1615–1622 (2019).

    CAS  PubMed  Google Scholar 

  123. Sherman, E. J. et al. Pilot study combining PD-L1 antibody durvalumab (D) with CTLA-4 antibody tremelimumab (T) and stereotactic body radiotherapy (SBRT) to treat metastatic anaplastic thyroid cancer (ATC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 6088 (2019).

    Google Scholar 

  124. Wang, Y. et al. The reciprocity between radiotherapy and cancer immunotherapy. Clin. Cancer Res. 25, 1709–1717 (2019).

    CAS  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03122496 (2020).

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03211117 (2020).

  127. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03215095 (2020).

  128. Voron, T. et al. Control of the immune response by pro-angiogenic factors. Front. Oncol. 4, 70 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02973997 (2020).

  131. Dierks, C., Miething, C., Thomusch, O., von Bubnoff, N. & Duyster, J. Lenvatinib and pembrolizumab as save and effective combination treatment in 8 patients with metastasized anaplastic (ATC) or poorly differentiated thyroid carcinoma (PDTC) [abstract 1824P]. Ann. Oncol. 29 (Suppl. 8), viii646 (2018).

    Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04171622 (2020).

  133. Makker, V. et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 20, 711–718 (2019).

    CAS  PubMed  Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03820986 (2020).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03829332 (2020).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02811861 (2020).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04199104 (2020).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03884101 (2020).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03713593 (2020).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03937219 (2020).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03914300 (2020).

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03181100 (2020).

  143. Oh, C. Y. et al. ALK and RET inhibitors promote HLA class I antigen presentation and unmask new antigens within the tumor immunopeptidome. Cancer Immunol. Res. 7, 1984–1997 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Franco, A. T. et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc. Natl Acad. Sci. USA 108, 1615–1620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jolly, L. A., Massoll, N. & Franco, A. T. Immune suppression mediated by myeloid and lymphoid derived immune cells in the tumor microenvironment facilitates progression of thyroid cancers driven by HrasG12V and Pten loss. J. Clin. Cell Immunol. 7, 451 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Jolly, L. A. et al. Fibroblast-mediated collagen remodeling within the tumor microenvironment facilitates progression of thyroid cancers driven by BrafV600E and Pten loss. Cancer Res. 76, 1804–1813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Knauf, J. A. et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65, 4238–4245 (2005).

    CAS  PubMed  Google Scholar 

  148. McFadden, D. G. et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl Acad. Sci. USA 111, E1600–E1609 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Vanden Borre, P. et al. Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 5, 3996–4010 (2014).

    PubMed  Google Scholar 

  150. Vanden Borre, P. et al. The next generation of orthotopic thyroid cancer models: immunocompetent orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid carcinoma. Thyroid 24, 705–714 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  153. Ryder, M. et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE 8, e54302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Knauf, J. A. et al. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. J. Clin. Invest. 128, 4086–4097 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Brauner, E. et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget 7, 17194–17211 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Gunda, V. et al. Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int. J. Cancer 144, 2266–2278 (2019).

    CAS  PubMed  Google Scholar 

  157. Gunda, V. et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br. J. Cancer 119, 1223–1232 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015).

    PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02834013 (2020).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01968109 (2020).

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03744468 (2020).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02179918 (2019).

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02904226 (2019).

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02628574 (2019).

  165. Tolcher, A. W. et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin. Cancer Res. 23, 5349–5357 (2017).

    CAS  PubMed  Google Scholar 

  166. Lenzo, J. C. et al. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol. Cell Biol. 90, 429–440 (2012).

    CAS  PubMed  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02718911 (2019).

  168. Wiehagen, K. R. et al. Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol. Res. 5, 1109–1121 (2017).

    CAS  PubMed  Google Scholar 

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT03502330 (2019).

  170. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet. Oncol. 20, 1083–1097 (2019).

    CAS  PubMed  Google Scholar 

  171. Zhang, W. et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front. Immunol. 11, 18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT04097769 (2019).

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT03957096 (2020).

  174. Schurch, C. M. et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid 29, 979–992 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. Bilusic, M. et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol. Immunother. 63, 225–234 (2014).

    CAS  PubMed  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT01856920 (2019).

  177. Gerard, A. C. et al. Correlation between the loss of thyroglobulin iodination and the expression of thyroid-specific proteins involved in iodine metabolism in thyroid carcinomas. J. Clin. Endocrinol. Metab. 88, 4977–4983 (2003).

    CAS  PubMed  Google Scholar 

  178. Hoang-Vu, C. et al. Gene expression of differentiation- and dedifferentiation markers in normal and malignant human thyroid tissues. Exp. Clin. Endocrinol. 100, 51–56 (1992).

    CAS  PubMed  Google Scholar 

  179. Bhoj, V. G. et al. GDNF family receptor alpha 4 (GFRa4)-targeted adoptive T-cell immunotherapy for medullary thyroid carcinoma [abstract]. Cancer Res. 76 (Suppl. 14), 2295 (2016).

    Google Scholar 

  180. Min, I. M. et al. CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors. Clin. Cancer Res. 23, 7569–7583 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Park, S. et al. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci. Rep. 7, 14366 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Vedvyas, Y. et al. Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci. Rep. 9, 10634 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Holzinger, A. & Abken, H. CAR T cells targeting solid tumors: carcinoembryonic antigen (CEA) proves to be a safe target. Cancer Immunol. Immunother. 66, 1505–1507 (2017).

    PubMed  Google Scholar 

  184. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  185. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    CAS  PubMed  Google Scholar 

  186. Chacon, J. A. et al. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy. Clin. Cancer Res. 21, 611–621 (2015).

    PubMed  Google Scholar 

  187. Harao, M. et al. 4-1BB-enhanced expansion of CD8(+) TIL from triple-negative breast cancer unveils mutation-specific CD8(+) T cells. Cancer Immunol. Res. 5, 439–445 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Yossef, R. et al. Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCI Insight 3, e122467 (2018).

    PubMed Central  Google Scholar 

  189. Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Frey, N. & Porter, D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol. Blood Marrow Transpl. 25, e123–e127 (2019).

    CAS  Google Scholar 

  191. Postow, M. A. & Hellmann, M. D. Adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 1163–1165 (2018).

    Google Scholar 

  192. Calabrese, L. & Mariette, X. The evolving role of the rheumatologist in the management of immune-related adverse events (irAEs) caused by cancer immunotherapy. Ann. Rheum. Dis. 77, 162–164 (2018).

    PubMed  Google Scholar 

  193. Ascierto, P. A. et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 25, 941–946 (2019).

    CAS  PubMed  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03072160 (2020).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03215810 (2020).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04165967 (2020).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03638375 (2018).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03610490 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jena D. French.

Ethics declarations

Competing interests

J.D.F. is involved in a clinical trial funded by Merck and Eisai.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Bastholt, J. Hadoux, M. Schlumberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Cancer Society: www.cancer.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

French, J.D. Immunotherapy for advanced thyroid cancers — rationale, current advances and future strategies. Nat Rev Endocrinol 16, 629–641 (2020). https://doi.org/10.1038/s41574-020-0398-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0398-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing