Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in renal phosphate handling

Abstract

Phosphate is critical for the maintenance of skeletal integrity, is a necessary component of important biomolecules, and is central to signal transduction and cell metabolism. It is becoming clear that endocrine communication between the skeleton, kidney, and the intestine is involved in maintaining appropriate serum phosphate concentrations, and that the kidney is the primary site for minute-to-minute regulation of phosphate levels. The identification of genetic alterations in Mendelian disorders of hypophosphatemia and hyperphosphatemia has led to the isolation of novel genes and the identification of new roles for existing proteins—such as fibroblast growth factor 23 and its processing systems, the co-receptor α-klotho, and phosphate transporters—in the control of renal phosphate handling. Recent findings also indicate that fibroblast growth factor 23 has feedback mechanisms involving parathyroid hormone and vitamin D that control phosphate homeostasis. This Review will highlight genetic, in vitro and in vivo findings, and will discuss how these clinical and experimental discoveries have uncovered novel aspects of renal phosphate handling and opened new research and therapeutic avenues.

Key Points

  • Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced in bone

  • FGF23 and parathyroid hormone (PTH) decrease the expression of the sodium–phosphate co-transporters Npt2a and Npt2c

  • FGF23 and PTH have opposing effects on 1,25-dihydroxyvitamin D, with FGF23 suppressing its production, and PTH increasing its production

  • The actions of FGF23 in the kidney are dependent on the expression of the co-receptor klotho, but the mechanisms guiding FGF23-dependent signaling may be complex

  • Human disorders associated with increased circulating concentrations of FGF23 are characterized by hypophosphatemia, and disorders associated with reduced FGF23 bioactivity are characterized by hyperphosphatemia

  • FGF23 and its receptor systems are promising targets for targeted therapeutics in the treatment of both heritable and acquired disorders of phosphate handling

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FGF23 regulatory systems in phosphate metabolism.
Figure 2: The molecular and physiological consequences of genetic alterations in heritable hypophosphatemia and hyperphosphatemia.

Similar content being viewed by others

References

  1. Takeda, E., Taketani, Y., Sawada, N., Sato, T. & Yamamoto, H. The regulation and function of phosphate in the human body. Biofactors 21, 345–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Tenenhouse, H. S. Regulation of phosphorus homeostasis by the type iia Na/phosphate cotransporter. Annu. Rev. Nutr. 25, 197–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg, B. G., Winters, R. W. & Graham, J. B. The normal range of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J. Clin. Endocrinol. Metab. 20, 364–379 (1960).

    Article  CAS  PubMed  Google Scholar 

  4. Burritt, M. F. et al. Pediatric reference intervals for 19 biologic variables in healthy children. Mayo Clin. Proc. 65, 329–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Walton, J. & Gray, T. K. Absorption of inorganic phosphate in the human small intestine. Clin. Sci. (Lond.) 56, 407–412 (1979).

    Article  CAS  Google Scholar 

  6. Corut, A. et al. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet. 79, 650–656 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabbagh, Y. et al. Intestinal Npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20, 2348–2358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berndt, T. et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc. Natl Acad. Sci. USA 104, 11085–11090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silve, C. & Friedlander, G. in The Kidney: Physiology & Pathophysiology (eds Seldin, D. W. & Giebisch, G.) 1885–1904 (Lippincott Williams & Wilkins, Philadelphia, 2000).

    Google Scholar 

  10. Baron, R. (ed.) Anatomy and Biology of Bone Matrix and Cellular Elements (American Society for Bone and Mineral Research, Washington, DC, 2003).

    Google Scholar 

  11. Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohkido, I., Segawa, H., Yanagida, R., Nakamura, M. & Miyamoto, K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch. 446, 106–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 78, 193–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Omdahl, J. L., Gray, R. W., Boyle, I. T., Knutson, J. & DeLuca, H. F. Regulation of metabolism of 25-hydroxycholecalciferol by kidney tissue in vitro by dietary calcium. Nat. New Biol. 237, 63–64 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Parfitt, A. M. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part IV of IV parts: the state of the bones in uremic hyperaparathyroidism—the mechanisms of skeletal resistance to PTH in renal failure and pseudohypoparathyroidism and the role of PTH in osteoporosis, osteopetrosis, and osteofluorosis. Metabolism 25, 1157–1188 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Bacic, D. et al. The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 69, 495–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pfister, M. F. et al. Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters. J. Biol. Chem. 272, 20125–20130 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Lotscher, M. et al. New aspects of adaptation of rat renal Na-Pi cotransporter to alterations in dietary phosphate. Kidney Int. 49, 1012–1018 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, F. et al. Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem. J. 333, 175–181 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Traebert, M., Volkl, H., Biber, J., Murer, H. & Kaissling, B. Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am. J. Physiol. Renal Physiol. 278, F792–F798 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Bacic, D. et al. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney. Pflugers Arch. 446, 52–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

  25. White, K. E., Larsson, T. E. & Econs, M. J. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr. Rev. 27, 221–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112, 683–692 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimada, T. et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143, 3179–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl Acad. Sci. USA (2009).

  30. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1, 25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91, 3144–3149 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Nishida, Y. et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 70, 2141–2147 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larsson, T. et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145, 3087–3094 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Shimada, T. et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Commun. 314, 409–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kolek, O. I. et al. 1α, 25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, S. et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol. Endocrinol. 23, 1505–1518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hesse, M., Frohlich, L. F., Zeitz, U., Lanske, B. & Erben, R. G. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 26, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benet-Pages, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Topaz, O. et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 36, 579–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Ichikawa, S. et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology 150, 2543–2550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garringer, H. J. et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J. Clin. Endocrinol. Metab. 91, 4037–4042 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int. 75, 1166–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schouten, B. J., Hunt, P. J., Livesey, J. H., Frampton, C. M. & Soule, S. G. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J. Clin. Endocrinol. Metab. 94, 2332–2337 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, K. et al. Saccharated ferric oxide (SFO)-induced osteomalacia: in vitro inhibition by SFO of bone formation and 1, 25-dihydroxy-vitamin D production in renal tubules. Bone 21, 57–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Sato, K. & Shiraki, M. Saccharated ferric oxide-induced osteomalacia in Japan: iron-induced osteopathy due to nephropathy. Endocr. J. 45, 431–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Schouten, B. J., Doogue, M. P., Soule, S. G. & Hunt, P. J. Iron polymaltose-induced FGF23 elevation complicated by hypophosphataemic osteomalacia. Ann. Clin. Biochem. 46, 167–169 (2009).

    Article  PubMed  Google Scholar 

  54. Shimizu, Y. et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone 45, 814–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Aono, Y. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res. 24, 1879–1888 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Segawa, H. et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am. J. Physiol. Renal Physiol. 292, F769–F779 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Brownstein, C. A. et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, S., Vierthaler, L., Tang, W., Zhou, J. & Quarles, L. D. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J. Am. Soc. Nephrol. 19, 2342–2350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsumura, Y. et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 242, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Imura, A. et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 565, 143–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Farrow, E. G., Davis, S. I., Summers, L. J. & White, K. E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol. 20, 955–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurosu, H. & Kuro, O. M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol. Cell. Endocrinol. 299, 72–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Krajisnik, T. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol. 195, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Brown, W. W. et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen's metaphyseal chondrodysplasia. J. Clin. Endocrinol. Metab. 94, 17–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Rhee, Y. et al. FGF23 gene expression is upregulated by PTH receptor activation in osteocytes in vitro and in vivo: a parathyroid-bone link influencing the endocrine function of osteocytes [abstract]. J. Bone Miner. Res. 24, (2009).

  69. O'Brien, C. A. et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 3, e2942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kobayashi, K. et al. Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur. J. Endocrinol. 154, 93–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Econs, M. J. & McEnery, P. T. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J. Clin. Endocrinol. Metab. 82, 674–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Imel, E. A., Hui, S. L. & Econs, M. J. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J. Bone Miner. Res. 22, 520–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Sabbagh, Y., Tenenhouse, H. S. & Econs, M. J. Mendelian hypophosphatemias. In The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) Ch. 197 (McGraw Hill, New York, 2008).

    Google Scholar 

  74. Tenenhouse, H. S., Roy, S., Martel, J. & Gauthier, C. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am. J. Physiol. 275, F527–F534 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. [No authors listed] A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat. Genet. 11, 130–136 (1995).

  76. Ichikawa, S. et al. Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone 43, 663–666 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beck, L. et al. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J. Clin. Invest. 99, 1200–1209 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Weber, T. J., Liu, S., Indridason, O. S. & Quarles, L. D. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 18, 1227–1234 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Yamazaki, Y. et al. Elevated circulatory and expression level of fibroblast growth factor (FGF)-23 in hypophosphatemic mice. Bone 32, S88 (2003).

    Google Scholar 

  81. Aono, Y. et al. The neutralization of FGF-23 ameliorates hypophosphatemia and rickets in Hyp mice. J. Bone Miner. Metab. 23, 1509–1518 (2003).

    Google Scholar 

  82. Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278, 37419–37426 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Tenenhouse, H. S. & Beck, L. Renal Na+-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 49, 1027–1032 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38, 1248–1250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fisher, L. W. & Fedarko, N. S. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect. Tissue Res. 44 (Suppl. 1), 33–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Feng, J. Q. et al. The Dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J. Dent. Res. 82, 776–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Ling, Y. et al. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J. Bone Miner. Res. 20, 2169–2177 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Yuan, B. et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 118, 722–734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Folpe, A. L. et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am. J. Surg. Pathol. 28, 1–30 (2004).

    Article  PubMed  Google Scholar 

  91. Ryan, E. A. & Reiss, E. Oncogenous osteomalacia: review of the world literature of 42 cases and report of two new cases. Am. J. Med. 77, 501–512 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Econs, M. J. & Drezner, M. K. Tumor-induced osteomalacia—unveiling a new hormone. N. Engl. J. Med. 330, 1679–1681 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. White, K. E. et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J. Clin. Endocrinol. Metab. 86, 497–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Jan De Beur, S. M. et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J. Bone Miner. Res. 17, 1102–1110 (2002).

    Article  CAS  Google Scholar 

  95. Yamazaki, Y. et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 87, 4957–4960 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Chalew, S. A., Lovchik, J. C., Brown, C. M. & Sun, C. C. Hypophosphatemia induced in mice by transplantation of a tumor-derived cell line from a patient with oncogenic rickets. J. Pediatr. Endocrinol. Metab. 9, 593–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Jaureguiberry, G., Carpenter, T. O., Forman, S., Juppner, H. & Bergwitz, C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am. J. Physiol. Renal Physiol. 295, F371–F379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Levi, M. Novel NaPi-2c mutations that cause mistargeting of NaPi-2c protein and uncoupling of Na-Pi cotransport cause HHRH. Am. J. Physiol. Renal Physiol. 295, F369–F370 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Segawa, H. et al. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J. Am. Soc. Nephrol. 20, 104–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Prie, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Khundmiri, S. J. et al. Novel regulatory function for NHERF-1 in Npt2a transcription. Am. J. Physiol. Renal Physiol. 294, F840–F849 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Inclan, A., Leon, P. & Camejo, M. G. Tumoral calcinosis. JAMA 121, 490–495 (1943).

    Article  Google Scholar 

  104. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Benet-Pages, A. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35, 455–462 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Garringer, H. J. et al. Two novel GALNT3 mutations in familial tumoral calcinosis. Am. J. Med. Genet. A 143, 2390–2396 (2007).

    Article  CAS  Google Scholar 

  107. Larsson, T. et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J. Clin. Endocrinol. Metab. 90, 2424–2427 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bergwitz, C. et al. Defective O-glycosylation due to a novel homozygous S129P mutation is associated with lack of fibroblast growth factor 23 secretion and tumoral calcinosis. J. Clin. Endocrinol. Metab. 94, 4267–4274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frishberg, Y. et al. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J. Mol. Med. 83, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Silver, J., Kilav, R., Sela-Brown, A. & Naveh-Many, T. Molecular mechanisms of secondary hyperparathyroidism. Pediatr. Nephrol. 14, 626–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Larsson, T., Nisbeth, U., Ljunggren, O., Juppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. The Indiana Clinical and Translational Trials Unit. A phase I, double-blind, randomized, placebo-controlled, single-dose, dose-escalation study of KRN23 in X-linked hypophosphatemia patients [online], (2009).

Download references

Acknowledgements

The authors would like to acknowledge support from NIH grant DK063934 (K. E. White), the Showalter Foundation, Genzyme Corporation, and the Indiana Genomics Initiative (INGEN) of Indiana University, supported in part by the Lilly Endowment. The authors would also like to acknowledge the editorial and scientific contributions of Ms L. J. Summers, Indiana University School of Medicine, Indianapolis, IN, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. White.

Ethics declarations

Competing interests

K. E. White declares associations with the following companies: Genzyme (grant/research support), Kyowa Hakko Kirin (royalties for licensing the FGF23 gene). E. G. Farrow declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrow, E., White, K. Recent advances in renal phosphate handling. Nat Rev Nephrol 6, 207–217 (2010). https://doi.org/10.1038/nrneph.2010.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing