Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic complexity of multiple myeloma and its clinical implications

This article has been updated

Key Points

  • The development of multiple myeloma is preceded by pre-malignant stages, and therefore constitutes a well-defined model of disease progression that is appropriate for studies of clonal evolution and heterogeneity

  • Whole-exome sequencing studies have enabled the characterization of the genomic alterations underlying the pathogenesis of multiple myeloma

  • The primary genomic events involved in multiple myeloma are the acquisition of hyperdiploidy or translocations affecting the IGH genes; these events are mutually exclusive

  • Secondary genomic events include chromosomal translocations, copy-number variations and single-nucleotide variants

  • Genomic events underlying multiple myeloma affect multiple signalling pathways including the MYC, NF-κB, and MAPK pathways, plasma-cell differentiation, cell-cycle regulation or DNA-damage repair

Abstract

Multiple myeloma (MM) is a genetically complex disease that evolves from pre-malignant stages, such as monoclonal gammaopathy of undetermined significance and smouldering multiple myeloma, and progresses to symptomatic MM; this continuum provides a unique framework to study the sequential genomic evolution of MM. In the past 5 years, results from large-scale whole-exome sequencing studies have provided new insights into the clonal heterogeneity and evolution of the disease. Moreover, the recurrent co-occurrence of genomic events helps to dissect the genomic complexity underlying tumour progression. According to the primary genetic events involved in tumorigenesis, MM tumours are hierarchically subdivided into hyperdiploid and non-hyperdiploid subtypes; subsequently, secondary genetic events lead to tumour progression. In this Review, we describe the 'driver' gene alterations involved in the development and progression of MM, with a focus on the sequential acquisition of the main genomic aberrations. We also provide valuable insight into the clonal heterogeneity and clonal evolution of the disease, as well as into the therapeutic implications of a comprehensive understanding of the genomic complexity of MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translocations involved in multiple myeloma.
Figure 2: Copy-number variations in multiple myeloma.
Figure 3: Most frequent somatic mutations in patients with multiple myeloma.
Figure 4: Recurrent genetic alterations affecting key pathways involved in multiple myeloma.
Figure 5: Clonal heterogeneity in multiple myeloma.
Figure 6: Proposed model of clonal evolution in multiple myeloma.

Similar content being viewed by others

Change history

  • 24 August 2016

    In Figure 4, in the MYC activation subpanel, the genes depicted should be MYC and MAX instead of BIRC2 and NRAS. This error has been corrected in the print and online versions of the article.

References

  1. Palumbo, A. & Anderson, K. Multiple myeloma. N. Engl. J. Med. 364, 1046–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2013. SEER website [online] http://seer.cancer.gov/csr/1975_2013/ (2016).

    Google Scholar 

  3. Landgren, O. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113, 5412–5417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weiss, B. M., Abadie, J., Verma, P., Howard, R. S. & Kuehl, W. M. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 113, 5418–5422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lohr, J. G. et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25, 91–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nature Commun. 6, 6997 (2015).

    Article  CAS  Google Scholar 

  9. Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol, http://dx.doi.org/10.1200/JCO.2014.59.1503 (2015).

  10. Altieri, A., Chen, B., Bermejo, J. L., Castro, F. & Hemminki, K. Familial risks and temporal incidence trends of multiple myeloma. Eur. J. Cancer 42, 1661–1670 (2006).

    Article  PubMed  Google Scholar 

  11. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 44, 58–61 (2012).

    Article  CAS  Google Scholar 

  12. Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 45, 1221–1225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinhold, N. et al. Inherited genetic susceptibility to monoclonal gammopathy of unknown significance. Blood 123, 2513–2517; quiz 2593, http://dx.doi.org/10.1182/blood-2013-10-532283 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Weinhold, N. et al. The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat. Genet. 45, 522–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, D. C. et al. Genetic factors influencing the risk of multiple myeloma bone disease. Leukemia, http://dx.doi.org/10.1038/leu.2015.342 (2015).

  16. Swaminathan, B. et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 6, 7213 (2015).

    Article  PubMed  Google Scholar 

  17. Ziv, E. et al. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat. Commun. 6, 7539 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Landgren, O. et al. Racial disparities in the prevalence of monoclonal gammopathies: a population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia 28, 1537–1542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Bergsagel, P. L. et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106, 296–303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ross, F. M. et al. Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia 19, 1634–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kaufmann, H. et al. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia 18, 1879–1882 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Fonseca, R. et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 100, 1417–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Avet-Loiseau, H. et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone Myelome. Cancer Res. 59, 4546–4550 (1999).

    CAS  PubMed  Google Scholar 

  25. Chesi, M. et al. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 88, 674–681 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Tanguay, D. A. & Chiles, T. C. Regulation of the catalytic subunit (p34PSK-J3/cdk4) for the major D-type cyclin in mature B lymphocytes. J. Immunol. 156, 539–548 (1996).

    CAS  PubMed  Google Scholar 

  27. Solvason, N. et al. Induction of cell cycle regulatory proteins in anti-immunoglobulin-stimulated mature B lymphocytes. J. Exp. Med. 184, 407–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Walker, B. A. et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 121, 3413–3419 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020–2028 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keats, J. J. et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101, 1520–1529 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Fonseca, R. et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101, 4569–4575 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, H. et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br. J. Haematol. 125, 64–68 (2004).

    Article  PubMed  Google Scholar 

  33. Avet-Loiseau, H. et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109, 3489–3495 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chesi, M. et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92, 3025–3034 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Santra, M., Zhan, F., Tian, E., Barlogie, B. & Shaughnessy, J. Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101, 2374–2376 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Keats, J. J. et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 105, 4060–4069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nature Genet. 23, 18–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Avet-Loiseau, H. et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J. Clin. Oncol. 28, 4630–4634 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Hanamura, I. et al. Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations. Jpn. J. Cancer Res. 92, 638–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hurt, E. M. et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5, 191–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Avet-Loiseau, H. et al. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood 117, 2009–2011 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Prideaux, S. M., Conway O'Brien, E. & Chevassut, T. J. The genetic architecture of multiple myeloma. Adv. Hematol. 2014, 864058 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Shaughnessy, J. Jr et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98, 217–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Mikhael, J. R. et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin. Proc. 88, 360–376 (2013).

    Article  PubMed  Google Scholar 

  48. Ross, F. M. et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95, 1221–1225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Avet-Loiseau, H. et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98, 3082–3086 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Weinhold, N. et al. Concomitant gain of 1q21 and MYC translocation define a poor prognostic subgroup of hyperdiploid multiple myeloma. Haematologica, http://dx.doi.org/10.3324/haematol.2015.136929 (2015).

  51. Haradhvala, N. J. et al. Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair. Cell 164, 538–549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Affer, M. et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28, 1725–1735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker, B. A. et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 4, e191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrasco, D. R. et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9, 313–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Walker, B. A. et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116, e56–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Walker, B. A. et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 108, 1733–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smadja, N. V. et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 12, 960–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Debes-Marun, C. S. et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17, 427–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Chng, W. J. et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 106, 2156–2161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Onodera, N., McCabe, N. R. & Rubin, C. M. Formation of a hyperdiploid karyotype in childhood acute lymphoblastic leukemia. Blood 80, 203–208 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Fonseca, R. et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102, 2562–2567 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Pawlyn, C. et al. Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations. Blood 125, 831–840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chng, W. J. et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 67, 2982–2989 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Smadja, N. V. et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98, 2229–2238 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Chretien, M. L. et al. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood 126, 2713–2719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shaughnessy, J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 10 (Suppl. 1), 117–126, http://dx.doi.org/10.1080/10245330512331390140 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Sawyer, J. R., Tricot, G., Mattox, S., Jagannath, S. & Barlogie, B. Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 91, 1732–1741 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Sawyer, J. R. et al. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood 123, 2504–2512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fournier, A. et al. 1q12 chromosome translocations form aberrant heterochromatic foci associated with changes in nuclear architecture and gene expression in B cell lymphoma. EMBO Mol. Med. 2, 159–171 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shi, L. et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget 1, 22–33 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Hanamura, I. et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108, 1724–1732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyd, K. D. et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 17, 7776–7784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang, H. et al. Impact of genomic aberrations including chromosome 1 abnormalities on the outcome of patients with relapsed or refractory multiple myeloma treated with lenalidomide and dexamethasone. Leuk. Lymphoma 51, 2084–2091 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Avet-Loiseau, H. et al. Prognostic significance of copy-number alterations in multiple myeloma. J. Clin. Oncol. 27, 4585–4590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang, H. et al. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant. 45, 117–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Fonseca, R. et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15, 981–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Avet-Loiseau, H. et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone Myelome. Blood 94, 2583–2589 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Chiecchio, L. et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 20, 1610–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Avet-Louseau, H. Daviet, A., Sauner, S., Bataille, R. & Intergroupe Francophone du Myélome. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br. J. Haematol. 111, 1116–1117 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Fonseca, R. et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 23, 2210–2221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tricot, G. et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86, 4250–4256 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Tiedemann, R. E. et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 22, 1044–1052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lode, L. et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica 95, 1973–1976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drach, J. et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92, 802–809 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Palumbo, A. et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 33, 2863–2869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nature Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Schmid, M. & Jensen, T. H. The exosome: a multipurpose RNA-decay machine. Trends Biochem. Sci. 33, 501–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Weissbach, S. et al. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br. J. Haematol. 169, 57–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Tam, W. et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 107, 4090–4100 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 203, 311–317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Landau, D. A., Carter, S. L., Getz, G. & Wu, C. J. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28, 34–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Bahlis, N. J. Darwinian evolution and tiding clones in multiple myeloma. Blood 120, 927–928 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Melchor, L. et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28, 1705–1715 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Smadja, N. V. et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 38, 234–239 (2003).

    Article  PubMed  Google Scholar 

  108. Walker, B. A. et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia 28, 384–390 (2014).

    Article  PubMed  Google Scholar 

  109. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    Article  PubMed  Google Scholar 

  110. Andrulis, M. et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 3, 862–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lonial, S. et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J. Clin. Oncol. 30, 1953–1959 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Jakubowiak, A. J. et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J. Clin. Oncol. 30, 1960–1965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lokhorst, H. M. et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Lonial, S. et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet 387, 1551–1560 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Carpenter, R. O. et al. B-Cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19, 2048–2060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ramos, C. A. et al. Clinical responses with T lymphocytes targeting malignancy-associated kappa light chains. J. Clin. Invest. http://dx.doi.org/10.1172/JCI86000 (2016).

  118. Lesokhin, A. M. et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2015.65.9789 (2016).

  119. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Janne, P. A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 14, 38–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Adjei, A. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J. Clin. Oncol. 26, 2139–2146 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Abdel-Wahab, O. et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 4, 538–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Gavine, P. R. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72, 2045–2056 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baughn, L. B. et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 66, 7661–7667 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Leukaemia & Lymphoma Society, the Multiple Myeloma Research Foundation and the US NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.M., K.Z.S. and J.P. researched data for the article. S.M., D.A.L., G.G. and I.M.G. contributed to discussions of content. All authors were involved in writing the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Irene M. Ghobrial.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manier, S., Salem, K., Park, J. et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 14, 100–113 (2017). https://doi.org/10.1038/nrclinonc.2016.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.122

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer