Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immune surveillance by the liver

Abstract

Receiving both portal vein blood and arterial blood, the liver is an important and critical component in the defense against blood-borne infection. To accomplish this role, the liver contains numerous innate and adaptive immune cells that specialize in detection and capture of pathogens from the blood. Further, these immune cells participate in coordinated immune responses leading to pathogen clearance, leukocyte recruitment and antigen presentation to lymphocytes within the vasculature. Finally, this role in host defense must be tightly regulated to ensure that inappropriate immune responses are not raised against nonpathogenic exogenous blood-borne molecules, such as those derived from food. It is this balance between activation and tolerance that characterizes the liver as a frontline immunological organ.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune constituents of the liver.
Figure 2: T cell activation by liver-resident cells.
Figure 3: Innate immune responses in the liver.

References

  1. Ebe, Y. et al. The role of Kupffer cells and regulation of neutrophil migration into the liver by macrophage inflammatory protein-2 in primary listeriosis in mice. Pathol. Int. 49, 519–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, W.Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Helmy, K.Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).This manuscript describes for the first time a new family of complement receptors, expressed predominately by macrophages, that are critical for capture of pathogens under flow conditions.

    Article  CAS  PubMed  Google Scholar 

  4. Sheth, K. & Bankey, P. The liver as an immune organ. Curr. Opin. Crit. Care 7, 99–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Crispe, I.N. Liver antigen-presenting cells. J. Hepatol. 54, 357–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Berg, R.D. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3, 149–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Son, G., Kremer, M. & Hines, I.N. Contribution of gut bacteria to liver pathobiology. Gastroenterol. Res. Pract. 2010, 453563 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lumsden, A.B., Henderson, J.M. & Kutner, M.H. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8, 232–236 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Paulos, C.M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117, 2197–2204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oda, M., Yokomori, H. & Han, J.Y. Regulatory mechanisms of hepatic microcirculation. Clin. Hemorheol. Microcirc. 29, 167–182 (2003).

    CAS  PubMed  Google Scholar 

  11. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wisse, E. et al. Structure and function of sinusoidal lining cells in the liver. Toxicol. Pathol. 24, 100–111 (1996).This work, using electron microscopy, beautifully illustrates the anatomical features, fine structures and cell-cell interactions present in the liver microvasculature.

    Article  CAS  PubMed  Google Scholar 

  13. Wisse, E., De Zanger, R.B., Charels, K., Van Der, S.P. & McCuskey, R.S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5, 683–692 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Kempka, G. & Kolb-Bachofen, V. Binding, uptake, and transcytosis of ligands for mannose-specific receptors in rat liver: an electron microscopic study. Exp. Cell Res. 176, 38–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44, 1182–1190 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, J. et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 129, 363–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knolle, P.A. & Limmer, A. Control of immune responses by savenger liver endothelial cells. Swiss Med. Wkly. 133, 501–506 (2003).

    CAS  PubMed  Google Scholar 

  18. Knolle, P.A. et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin. Exp. Immunol. 114, 427–433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lohse, A.W. et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110, 1175–1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Steffan, A.M., Gendrault, J.L., McCuskey, R.S., McCuskey, P.A. & Kirn, A. Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology 6, 830–836 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Sorensen, K.K. et al. The scavenger endothelial cell: a new player in homeostasis and immunity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R1217–R1230 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348–1354 (2000).Using both in vitro and in vivo techniques, this work demonstrates the ability of LSECs to take up and cross-present antigens to T cells in the liver. This work also shows how this cross-presentation can result in rapid and efficient T cell tolerance in the liver.

    Article  CAS  PubMed  Google Scholar 

  23. Berg, M. et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur. J. Immunol. 36, 2960–2970 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35, 2970–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Tavassoli, M., Kishimoto, T. & Kataoka, M. Liver endothelium mediates the hepatocyte's uptake of ceruloplasmin. J. Cell Biol. 102, 1298–1303 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47, 296–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Knolle, P.A. et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J. Immunol. 162, 1401–1407 (1999).

    CAS  PubMed  Google Scholar 

  28. Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol. 22, 226–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Schildberg, F.A. et al. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol. 38, 957–967 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Seki, E. & Brenner, D.A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Lipopolysaccharide-induced innate immune responses in primary hepatocytes downregulates woodchuck hepatitis virus replication via interferon-independent pathways. Cell. Microbiol. 11, 1624–1637 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Franco, A. et al. Expression of class I and class II major histocompatibility complex antigens on human hepatocytes. Hepatology 8, 449–454 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, M., Tabaczewski, P., Truscott, S.M., Van Kaer, L. & Stroynowski, I. Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J. Immunol. 175, 1047–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Wahl, C., Bochtler, P., Chen, L., Schirmbeck, R. & Reimann, J. B7–H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology 135, 980–988 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Balam, S., Romero, J.F., Bongfen, S.E., Guillaume, P. & Corradin, G. CSP–a model for in vivo presentation of Plasmodium berghei sporozoite antigens by hepatocytes. PLoS ONE 7, e51875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian, S. et al. Hepatocyte-induced apoptosis of activated T cells, a mechanism of liver transplant tolerance, is related to the expression of ICAM-1 and hepatic lectin. Transplant. Proc. 33, 226 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bertolino, P., McCaughan, G.W. & Bowen, D.G. Role of primary intrahepatic T-cell activation in the 'liver tolerance effect'. Immunol. Cell Biol. 80, 84–92 (2002).

    Article  PubMed  Google Scholar 

  38. Bertolino, P., Bowen, D.G., McCaughan, G.W. & Fazekas de St, G.B. Antigen-specific primary activation of CD8+ T cells within the liver. J. Immunol. 166, 5430–5438 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Bode, J.G., Albrecht, U., Haussinger, D., Heinrich, P.C. & Schaper, F. Hepatic acute phase proteins–regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kappaB-dependent signaling. Eur. J. Cell Biol. 91, 496–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Nemeth, E., Baird, A.W. & O'Farrelly, C. Microanatomy of the liver immune system. Semin. Immunopathol. 31, 333–343 (2009).

    Article  PubMed  Google Scholar 

  41. Gao, B., Jeong, W.I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Parker, G.A. & Picut, C.A. Immune functioning in non lymphoid organs: the liver. Toxicol. Pathol. 40, 237–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Pannen, B.H. & Robotham, J.L. The acute-phase response. New Horiz. 3, 183–197 (1995).

    CAS  PubMed  Google Scholar 

  44. Sarma, J.V. & Ward, P.A. The complement system. Cell Tissue Res. 343, 227–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Bilzer, M., Roggel, F. & Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver Int. 26, 1175–1186 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gale, R.P., Sparkes, R.S. & Golde, D.W. Bone marrow origin of hepatic macrophages (Kupffer cells) in humans. Science 201, 937–938 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. Taniguchi, H., Toyoshima, T., Fukao, K. & Nakauchi, H. Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2, 198–203 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Bouwens, L., Baekeland, M., De Zanger, R. & Wisse, E. Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6, 718–722 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Parker, G.A. & Picut, C.A. Liver immunobiology. Toxicol. Pathol. 33, 52–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Gorgani, N.N. et al. Complement receptor of the Ig superfamily enhances complement-mediated phagocytosis in a subpopulation of tissue resident macrophages. J. Immunol. 181, 7902–7908 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gregory, S.H., Sagnimeni, A.J. & Wing, E.J. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J. Immunol. 157, 2514–2520 (1996).This work describes for the first time a coordinated response between KCs and neutrophils, whereby the KC is critical for pathogen capture and the neutrophil is critical for pathogen killing. Though KCs could capture the bacteria, they could not fully internalize and kill the pathogen. To compensate for this, neutrophils were recruited to these bound bacteria and were responsible for pathogen killing.

    CAS  PubMed  Google Scholar 

  52. You, Q., Cheng, L., Kedl, R.M. & Ju, C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48, 978–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, L.R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8 T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).Using CpG DNA, this study demonstrated a mechanism for overcoming T cell tolerance in the liver. Using a variety of techniques, including intravital microscopy, activated T cells were shown to form follicle-like structures in the liver, supporting proliferation and licensing of these cells as cytotoxic effector cells leading to the clearance of chronic viral infection from the liver.

    Article  CAS  PubMed  Google Scholar 

  54. Shi, J., Gilbert, G.E., Kokubo, Y. & Ohashi, T. Role of the liver in regulating numbers of circulating neutrophils. Blood 98, 1226–1230 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, J., Fujieda, H., Kokubo, Y. & Wake, K. Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 24, 1256–1263 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Fadok, V.A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grozovsky, R., Hoffmeister, K.M. & Falet, H. Novel clearance mechanisms of platelets. Curr. Opin. Hematol. 17, 585–589 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Winau, F., Quack, C., Darmoise, A. & Kaufmann, S.H. Starring stellate cells in liver immunology. Curr. Opin. Immunol. 20, 68–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Bomble, M., Tacke, F., Rink, L., Kovalenko, E. & Weiskirchen, R. Analysis of antigen-presenting functionality of cultured rat hepatic stellate cells and transdifferentiated myofibroblasts. Biochem. Biophys. Res. Commun. 396, 342–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Winau, F. et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26, 117–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Vinas, O. et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38, 919–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Muhanna, N., Horani, A., Doron, S. & Safadi, R. Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin. Exp. Immunol. 148, 338–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu, M.C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7–H1-mediated T-cell apoptosis in mice. Hepatology 40, 1312–1321 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ichikawa, S., Mucida, D., Tyznik, A.J., Kronenberg, M. & Cheroutre, H. Hepatic stellate cells function as regulatory bystanders. J. Immunol. 186, 5549–5555 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Chang, J. et al. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol. Res. 43, 658–669 (2013).

    Article  PubMed  Google Scholar 

  67. Sato, T., Yamamoto, H., Sasaki, C. & Wake, K. Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy. Cell Tissue Res. 294, 503–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J. Exp. Med. 185, 777–784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J. Exp. Med. 183, 1865–1878 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Goddard, S., Youster, J., Morgan, E. & Adams, D.H. Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am. J. Pathol. 164, 511–519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tokita, D. et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. J. Hepatol. 49, 1008–1018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pillarisetty, V.G., Shah, A.B., Miller, G., Bleier, J.I. & DeMatteo, R.P. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J. Immunol. 172, 1009–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Gao, X. et al. CD8+ DC, but not CD8 DC, isolated from BCG-infected mice reduces pathological reactions induced by mycobacterial challenge infection. PLoS ONE 5, e9281 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yu, B. et al. Two immunogenic passenger dendritic cell subsets in the rat liver have distinct trafficking patterns and radiosensitivities. Hepatology 56, 1532–1545 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Pillarisetty, V.G., Katz, S.C., Bleier, J.I., Shah, A.B. & DeMatteo, R.P. Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-gamma via autocrine IL-12. J. Immunol. 174, 2612–2618 (2005).This work is the first description and characterization of NK-DCs.

    Article  CAS  PubMed  Google Scholar 

  76. Chen, L. et al. Natural killer dendritic cells are an intermediate of developing dendritic cells. J. Leukoc. Biol. 81, 1422–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Chaudhry, U.I. et al. Combined stimulation with interleukin-18 and CpG induces murine natural killer dendritic cells to produce IFN-gamma and inhibit tumor growth. Cancer Res. 66, 10497–10504 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sana, G. et al. Adult human hepatocytes promote CD4+ T cell hyporesponsiveness via interleukin-10 producing allogeneic dendritic cells. Cell Transplant. doi:10.3727/096368913X666421 (12 April 2013).

  79. Bamboat, Z.M. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol. 182, 1901–1911 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kingham, T.P. et al. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 45, 445–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Doherty, D.G. & O'Farrelly, C. Innate and adaptive lymphoid cells in the human liver. Immunol. Rev. 174, 5–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Crispe, I.N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Notas, G., Kisseleva, T. & Brenner, D. NK and NKT cells in liver injury and fibrosis. Clin. Immunol. 130, 16–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Abo, T., Kawamura, T. & Watanabe, H. Physiological responses of extrathymic T cells in the liver. Immunol. Rev. 174, 135–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seki, S., Abo, T., Ohteki, T., Sugiura, K. & Kumagai, K. Unusual alpha beta-T cells expanded in autoimmune lpr mice are probably a counterpart of normal T cells in the liver. J. Immunol. 147, 1214–1221 (1991).

    CAS  PubMed  Google Scholar 

  87. Iiai, T. et al. Ontogeny and development of extrathymic T cells in mouse liver. Immunology 77, 556–563 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Watanabe, H. et al. Relationships between intermediate TCR cells and NK1.1+ T cells in various immune organs. NK1.1+ T cells are present within a population of intermediate TCR cells. J. Immunol. 155, 2972–2983 (1995).

    CAS  PubMed  Google Scholar 

  89. Brennan, P.J., Brigl, M. & Brenner, M.B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Matsuda, J.L., Mallevaey, T., Scott-Browne, J. & Gapin, L. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20, 358–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wong, C.H., Jenne, C.N., Lee, W.Y., Leger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).This work demonstrated for the first time the ability of NKT cells to activate in response to distal injury. This activation was mediated by neurotransmitters and resulted in the production of an anti-inflammatory, immunosuppressed state after ischemic stroke in the brain, rendering the animal susceptible to increased bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  92. Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).This study provides the first description of a 'patrolling' lymphocyte in the liver microvasculature. Through the application of intravital microscopy, NKT cells were observed to reside in and actively crawl through the liver sinusoids, searching for pathogens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Campos, R.A. et al. Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. J. Exp. Med. 198, 1785–1796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Campos, R.A. et al. Invariant NKT cells rapidly activated via immunization with diverse contact antigens collaborate in vitro with B-1 cells to initiate contact sensitivity. J. Immunol. 177, 3686–3694 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Wong, C.H., Jenne, C.N., Petri, B., Chrobok, N.L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jenne, C.N., Urrutia, R. & Kubes, P. Platelets: bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 35, 254–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Smedsrod, B., Pertoft, H., Gustafson, S. & Laurent, T.C. Scavenger functions of the liver endothelial cell. Biochem. J. 266, 313–327 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schafer, G., Guler, R., Murray, G., Brombacher, F. & Brown, G.D. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PLoS ONE 4, e8448 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Eyre, N.S., Drummer, H.E. & Beard, M.R. The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathog. 6, e1001130 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dreux, M. et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog. 5, e1000310 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Magnusson, S. & Berg, T. Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells. Biochem. J. 257, 651–656 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stahl, P.D. & Ezekowitz, R.A. The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10, 50–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Kerrigan, A.M. & Brown, G.D. C-type lectins and phagocytosis. Immunobiology 214, 562–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McDonald, B. et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J. Exp. Med. 205, 915–927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jenne, C.N., Wong, C.H., Petri, B. & Kubes, P. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation. PLoS ONE 6, e25109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jenne, C.N. et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13, 169–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Tang, E.D. & Wang, C.Y. MAVS self-association mediates antiviral innate immune signaling. J. Virol. 83, 3420–3428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 20, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Eksioglu, E.A. et al. Characterization of HCV interactions with Toll-like receptors and RIG-I in liver cells. PLoS ONE 6, e21186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scott, M.J., Chen, C., Sun, Q. & Billiar, T.R. Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production. J. Hepatol. 53, 693–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Monteiro, R.C. & Van De Winkel, J.G. IgA Fc receptors. Annu. Rev. Immunol. 21, 177–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Ganesan, L.P. et al. FcgammaRIIb on liver sinusoidal endothelium clears small immune complexes. J. Immunol. 189, 4981–4988 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Bhatia, A., Blades, S., Cambridge, G. & Edwards, J.C. Differential distribution of Fc gamma RIIIa in normal human tissues and co-localization with DAF and fibrillin-1: implications for immunological microenvironments. Immunology 94, 56–63 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lovdal, T. & Berg, T. Transcription of Fc(gamma) receptors in different rat liver cells. Cell Biol. Int. 25, 821–824 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Ravetch, J.V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Skogh, T., Blomhoff, R., Eskild, W. & Berg, T. Hepatic uptake of circulating IgG immune complexes. Immunology 55, 585–594 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kosugi, I., Muro, H., Shirasawa, H. & Ito, I. Endocytosis of soluble IgG immune complex and its transport to lysosomes in hepatic sinusoidal endothelial cells. J. Hepatol. 16, 106–114 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. He, J.Q. et al. CRIg mediates early Kupffer cell responses to adenovirus. J. Leukoc. Biol. 93, 301–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Menezes, G.B. et al. Selective down-regulation of neutrophil Mac-1 in endotoxemic hepatic microcirculation via IL-10. J. Immunol. 183, 7557–7568 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. McDonald, B., Urrutia, R., Yipp, B.G., Jenne, C.N. & Kubes, P. Intravascular Neutrophil Extracellular Traps Capture Bacteria from the Bloodstream during Sepsis. Cell Host Microbe 12, 324–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Bonder, C.S. et al. Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity 23, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Imaeda, A.B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Marques, P.E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Aspinall, A.I. et al. CX(3)CR1 and vascular adhesion protein-1-dependent recruitment of CD16(+) monocytes across human liver sinusoidal endothelium. Hepatology 51, 2030–2039 (2010).

    Article  PubMed  Google Scholar 

  131. Thomas, S.Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).This is the first description of NETs, a bacterial killing mechanism whereby neutrophil nuclear DNA decondenses and is ejected from the cell, forming a diffuse, sticky web decorated with numerous nuclear and granule proteins.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to W.-Y. Lee and C. Wong (Monash University, Australia) for providing the intravital microscopy images and movie used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kubes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rapid target capture by Kupffer cells under flow conditions.

Intravital microscopy of the liver of a C57BL/6 mouse. After intravenous injection of inert, fluorescent microspheres (green) F4/80-labeled Kupffer cells (blue) are seen to capture the particles from the circulation under shear conditions. (MOV 1803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenne, C., Kubes, P. Immune surveillance by the liver. Nat Immunol 14, 996–1006 (2013). https://doi.org/10.1038/ni.2691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing