Skip to main content

Advertisement

Log in

Blood Biomarkers of Alcohol Use: A Scoping Review

  • Neuroscience & Addiction (A Haghparast and H Ekhtiari, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Understanding whether a person has consumed alcohol or not, as well as quantitative assessment of alcohol use, are often based on self-reported measures, which may be subject to recall bias, among other challenges. Although not without limitations, blood biomarkers may complement self-reported assessments to provide a more accurate determination of the presence and quantity of alcohol use. The aim of this review is to provide a critical overview of the current knowledge and research on biomarkers of alcohol use, with a particular focus on blood tests.

Recent Findings

This scoping review summarizes the published work on blood tests currently used in clinical practice, including phosphatidyl ethanol (PEth), fatty acid ethyl ester (FAEE), carbohydrate-deficient transferrin (CDT), total serum sialic acid (TSA), mean corpuscular volume (MCV), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), and cholesteryl ester transfer protein (CETP). Emerging blood biomarkers with a potential use to assess alcohol drinking are also briefly reviewed, including N-Acetyl-β-Hexosaminidase (Beta-Hex), macrophage migration inhibitory factor (MIF), and d-dopachrome tautomerase (DDT). We discuss the aforementioned biomarkers in the context of their clinical implications, characteristics, strengths, and limitations.

Summary

The available blood biomarkers considerably vary in the time period in which they detect alcohol use and the amount of alcohol they are sensitive to. While currently available biomarkers provide useful information, especially in combination with self-reported measures, future work is needed to identify more sensitive and specific blood biomarkers for different levels and patterns of alcohol use. Integration of such biomarkers into clinical practice and research will increase the accuracy and richness of the data and may guide more effective and targeted strategies for prevention, diagnosis, and treatment of excessive alcohol use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Samokhvalov AV, et al. Disability associated with alcohol abuse and dependence. Alcohol Clin Exp Res. 2010;34(11):1871–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rogers RG, et al. Drinking problems and mortality risk in the United States. Drug Alcohol Depend. 2015;151:38–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stahre M, et al. Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. Prev Chronic Dis. 2014;11:E109.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nutt DJ, King LA, Phillips LD. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558–65.

    Article  PubMed  Google Scholar 

  5. Sobell, L.C. and M.B. Sobell, Alcohol Timeline Followback (TFLB). Handbook of Psychiatric Measures, ed. A.P.A. (Ed.). 2000, Washington, DC: American Psychiatric Association

  6. Sobell LC, et al. The reliability of the Alcohol Timeline Followback when administered by telephone and by computer. Drug Alcohol Depend. 1996;42:49–54.

    Article  CAS  PubMed  Google Scholar 

  7. Mundle G, et al. Treatment outcome in alcoholism - a comparison of self-report and the biological markers carbohydrate-deficient transferrin and gamma-glutamyl transferase. Eur Addict Res. 1999;5(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  8. Hastedt M, et al. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair. Forensic Sci Med Pathol. 2013;9(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  9. Helander A, Péter O, Zheng Y. Monitoring of the alcohol biomarkers PEth, CDT and EtG/EtS in an outpatient treatment setting. Alcohol Alcohol. 2012;47(5):552–7.

    Article  CAS  PubMed  Google Scholar 

  10. Lavery, I. and P. Ingram, Venepuncture: best practice. Nurs Stand, 2005. 19(49): p. 55–65; quiz 66.

  11. Medicine, A.S.f.A., Drug Testing: A White Paper of the American Society of Addiction Medicine (ASAM). 2013, Chevy Chase, MD.

  12. Allen JP, Litten RZ. Recommendations on use of biomarkers in alcoholism treatment trials. Alcohol Clin Exp Res. 2003;27(10):1667–70.

    Article  PubMed  Google Scholar 

  13. •• Alladio, E., et al., Evaluation of direct and indirect ethanol biomarkers using a likelihood ratio approach to identify chronic alcohol abusers for forensic purposes. Forensic Science International, 2017. 271: p. 13-22. Findings from this study evidenced novel methods to confirm alcohol abstinence and exposure via detection of Ets, Etg, and Peth.

  14. •• Andresen-Streichert, H., et al., Alcohol Biomarkers in Clinical and Forensic Contexts. Deutsches Arzteblatt international, 2018. 115(18): p. 309-315. This review outlined available biomarkers for alcohol use and information on their sensitivity, specificity, and detection window for alcohol use. Particularly, this review outlined methods and implications for blood biomarkers in clinical and laboratory contexts.

  15. Leeman RF, et al. Ethanol consumption: how should we measure it? Achieving consilience between human and animal phenotypes. Addict Biol. 2010;15(2):109–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng CT, et al. Fatty acid ethyl esters in meconium: a biomarker of fetal alcohol exposure and effect. Exp Biol Med (Maywood). 2021;246(4):380–6.

    Article  CAS  Google Scholar 

  17. Aradóttir S, Moller K, Alling C. Phosphatidylethanol formation and degradation in human and rat blood. Alcohol Alcohol. 2004;39(1):8–13.

    Article  PubMed  Google Scholar 

  18. Kalapatapu RK, Chambers R. Novel objective biomarkers of alcohol use: potential diagnostic and treatment management tools in dual diagnosis care. J Dual Diagn. 2009;5(1):57–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holford NH. Clinical pharmacokinetics of ethanol. Clin Pharmacokinet. 1987;13(5):273–92.

    Article  CAS  PubMed  Google Scholar 

  20. Kwo PY, et al. Gender differences in alcohol metabolism: relationship to liver volume and effect of adjusting for body mass. Gastroenterology. 1998;115(6):1552–7.

    Article  CAS  PubMed  Google Scholar 

  21. Meier P, Seitz HK. Age, alcohol metabolism and liver disease. Curr Opin Clin Nutr Metab Care. 2008;11(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  22. Sommers MS, et al. Laboratory measures of alcohol (ethanol) consumption: strategies to assess drinking patterns with biochemical measures. Biol Res Nurs. 2003;4(3):203–17.

    Article  PubMed  Google Scholar 

  23. Jones AW. Interindividual variations in the disposition and metabolism of ethanol in healthy men. Alcohol. 1984;1(5):385–91.

    Article  CAS  PubMed  Google Scholar 

  24. Gustavsson L, Alling C. Formation of phosphatidylethanol in rat brain by phospholipase D. Biochem Biophys Res Commun. 1987;142(3):958–63.

    Article  CAS  PubMed  Google Scholar 

  25. Viel G, et al. Phosphatidylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. Int J Mol Sci. 2012;13(11):14788–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wurst FM, et al. Phosphatidylethanol: normalization during detoxification, gender aspects and correlation with other biomarkers and self-reports. Addict Biol. 2010;15(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  27. Wurst FM, et al. Characterization of sialic acid index of plasma apolipoprotein J and phosphatidylethanol during alcohol detoxification–a pilot study. Alcohol Clin Exp Res. 2012;36(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  28. Varga A, Alling C. Formation of phosphatidylethanol in vitro in red blood cells from healthy volunteers and chronic alcoholics. J Lab Clin Med. 2002;140(2):79–83.

    Article  CAS  PubMed  Google Scholar 

  29. Neumann J, et al. Performance of PEth compared with other alcohol biomarkers in subjects presenting for occupational and pre-employment medical examination. Alcohol Alcohol. 2020;55(4):401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wurst FM, et al. Concentration of fatty acid ethyl esters in hair of alcoholics: comparison to other biological state markers and self reported-ethanol intake. Alcohol Alcohol. 2004;39(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hartmann S, et al. Phosphatidylethanol as a sensitive and specific biomarker: comparison with gamma-glutamyl transpeptidase, mean corpuscular volume and carbohydrate-deficient transferrin. Addict Biol. 2007;12(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  32. Gnann H, et al. Identification of 48 homologues of phosphatidylethanol in blood by LC-ESI-MS/MS. Anal Bioanal Chem. 2010;396(7):2415–23.

    Article  CAS  PubMed  Google Scholar 

  33. Faller A, et al. LC-MS/MS analysis of phosphatidylethanol in dried blood spots versus conventional blood specimens. Anal Bioanal Chem. 2011;401(4):1163–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bakhireva, L.N., et al., Prevalence of prenatal alcohol exposure in the state of Texas as assessed by phosphatidylethanol in newborn dried blood spot specimens. Alcoholism: Clinical and Experimental Research, 2017. 41(5): p. 1004–1011.

  35. • Nguyen, V.L., et al., Evaluation of a novel method for the analysis of alcohol biomarkers: Ethyl glucuronide, ethyl sulfate and phosphatidylethanol. Alcohol, 2018. 67: p. 7-13. Findings from this study suggest the use of EtG, EtS, and PEth as blood biomarkers in detecting abstinence and exposure of alcohol use in clinical and non-clinical settings.

  36. Auwärter V, et al. Fatty acid ethyl esters in hair as markers of alcohol consumption. Segmental hair analysis of alcoholics, social drinkers, and teetotalers. Clin Chem. 2001;47(12):2114–23.

    Article  PubMed  Google Scholar 

  37. Doyle KM, et al. Fatty Acid Ethyl Esters in the blood as markers for ethanol intake. JAMA. 1996;276(14):1152–6.

    Article  CAS  PubMed  Google Scholar 

  38. Borucki K, et al. In heavy drinkers, fatty acid ethyl esters remain elevated for up to 99 hours. Alcohol Clin Exp Res. 2007;31(3):423–7.

    Article  CAS  PubMed  Google Scholar 

  39. Swift R. Direct measurement of alcohol and its metabolites. Addiction. 2003;98(Suppl 2):73–80.

    Article  PubMed  Google Scholar 

  40. Peterson K. Biomarkers for alcohol use and abuse - a summary. Alcohol Res Health. 2004;28(1):30–7.

    PubMed  PubMed Central  Google Scholar 

  41. Batey R, Patterson F. Carbohydrate-deficient transferrin in the ethanol-consuming rat model. Alcohol. 1991;8(6):487–90.

    Article  CAS  PubMed  Google Scholar 

  42. Hale EA, et al. Deleterious actions of chronic ethanol treatment on the glycosylation of rat brain clusterin. Brain Res. 1998;785(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  43. Mutlag S, et al. The assessment of alcohol effects on red blood cell indices in rats. Drug Invention Today. 2018;10:3153–8.

    Google Scholar 

  44. Li, Y.-M., et al., Effect of acute alcoholism on hepatic enzymes and oxidation/antioxidation in rats. Hepatobiliary & pancreatic diseases international : HBPD INT, 2004. 3: p. 241-4.

  45. Puukka K, et al. Age-related changes on serum ggt activity and the assessment of ethanol intake. Alcohol Alcohol. 2006;41(5):522–7.

    Article  CAS  PubMed  Google Scholar 

  46. Conigrave KM, et al. CDT, GGT, and AST as markers of alcohol use: the WHO/ISBRA collaborative project. Alcohol Clin Exp Res. 2002;26(3):332–9.

    Article  CAS  PubMed  Google Scholar 

  47. Stibler H. Carbohydrate-Deficient Transferrin in Serum: a New Marker of Potentially Harmful Alcohol Consumption Reviewed. Clin Chem. 1991;37(12):2029–37.

    Article  CAS  PubMed  Google Scholar 

  48. Hock B, et al. Validity of carbohydrate-deficient transferrin (%CDT), gamma-glutamyltransferase (gamma-GT) and mean corpuscular erythrocyte volume (MCV) as biomarkers for chronic alcohol abuse: a study in patients with alcohol dependence and liver disorders of non-alcoholic and alcoholic origin. Addiction. 2005;100(10):1477–86.

    Article  CAS  PubMed  Google Scholar 

  49. Hock B, et al. Validity of carbohydrate-deficient transferrin (%CDT), γ- glutamyltransferase (γ-GT) and mean corpuscular erythrocyte volume (MCV) as biomarkers for chronic alcohol abuse: a study in patients with alcohol dependence and liver disorders of non-alcoholic and alcoholic origin. Addiction. 2005;100(10):1477–86.

    Article  CAS  PubMed  Google Scholar 

  50. Berlakovich GA, et al. Pretransplant screening of sobriety with carbohydrate-deficient transferrin in patients suffering from alcoholic cirrhosis. Transpl Int. 2004;17(10):617–21.

    Article  PubMed  Google Scholar 

  51. Anton RF. The use of carbohydrate deficient transferrin as an indicator of alcohol consumption during treatment and follow-up. Alcohol Clin Exp Res. 1996;20(8 Suppl):54a–6a.

    Article  CAS  PubMed  Google Scholar 

  52. Sillanaukee P, et al. Enhanced clinical utility of gamma-CDT in a general population. Alcohol Clin Exp Res. 2000;24(8):1202–6.

    CAS  PubMed  Google Scholar 

  53. Meerkerk GJ, et al. The specificity of the CDT assay in general practice: the influence of common chronic diseases and medication on the serum CDT concentration. Alcohol Clin Exp Res. 1998;22(4):908–13.

    CAS  PubMed  Google Scholar 

  54. Anton RF, et al. Comparison of Bio-Rad %CDT TIA and CDTect as laboratory markers of heavy alcohol use and their relationships with gamma-glutamyltransferase. Clin Chem. 2001;47(10):1769–75.

    CAS  PubMed  Google Scholar 

  55. DiMartini A, et al. Carbohydrate deficient transferrin in abstaining patients with end-stage liver disease. Alcohol Clin Exp Res. 2001;25(12):1729–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fagan KJ, et al. Diagnostic sensitivity of carbohydrate deficient transferrin in heavy drinkers. BMC Gastroenterol. 2014;14:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Allen JP, et al. Carbohydrate-deficient transferrin, gamma-glutamyltransferase, and macrocytic volume as biomarkers of alcohol problems in women. Alcohol Clin Exp Res. 2000;24(4):492–6.

    CAS  PubMed  Google Scholar 

  58. Chrostek L, et al. Relationship between serum sialic acid and sialylated glycoproteins in alcoholics. Alcohol Alcohol. 2007;42(6):588–92.

    Article  CAS  PubMed  Google Scholar 

  59. Sillanaukee P, Pönniö M, Jääskeläinen IP. Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Invest. 1999;29(5):413–25.

    Article  CAS  PubMed  Google Scholar 

  60. Javors MA, Johnson BA. Current status of carbohydrate deficient transferrin, total serum sialic acid, sialic acid index of apolipoprotein J and serum beta-hexosaminidase as markers for alcohol consumption. Addiction. 2003;98(Suppl 2):45–50.

    Article  PubMed  Google Scholar 

  61. Nagao T, Hirokawa M. Diagnosis and treatment of macrocytic anemias in adults. J Gen Fam Med. 2017;18(5):200–4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Whitehead TP, Clarke CA, Whitfield AG. Biochemical and haematological markers of alcohol intake. Lancet. 1978;1(8071):978–81.

    Article  CAS  PubMed  Google Scholar 

  63. Sillanaukee P, Pönniö M, Seppä K. Sialic acid: new potential marker of alcohol abuse. Alcohol Clin Exp Res. 1999;23(6):1039–43.

    CAS  PubMed  Google Scholar 

  64. Savage D, Lindenbaum J. Anemia in alcoholics. Medicine (Baltimore). 1986;65(5):322–38.

    Article  CAS  Google Scholar 

  65. Caracioni AA, et al. Iron Deficiency Anemia. In: Enna SJ, Bylund DB, editors., et al., xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier; 2007. p. 1–4.

    Google Scholar 

  66. Northrop-Clewes CA, Thurnham DI. Biomarkers for the differentiation of anemia and their clinical usefulness. J Blood Med. 2013;4:11–22.

    PubMed  PubMed Central  Google Scholar 

  67. Dasgupta, A., Alcohol and Its Biomarkers : Clinical Aspects and Laboratory Determination. 2015, Saint Louis, UNITED STATES: Elsevier.

  68. Halvorson, M.R., et al., Comparative evaluation of the clinical utility of three markers of ethanol intake: the effect of gender. Alcoholism: Clinical and Experimental Research, 1993. 17(2): p. 225–229.

  69. Niemelä O. Biomarkers in alcoholism. Clin Chim Acta. 2007;377(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  70. Rosman AS, Lieber CS. Diagnostic utility of laboratory tests in alcoholic liver disease. Clin Chem. 1994;40(8):1641–51.

    Article  CAS  PubMed  Google Scholar 

  71. Cohen JA, Kaplan MM. The SGOT/SGPT ratio–an indicator of alcoholic liver disease. Dig Dis Sci. 1979;24(11):835–8.

    Article  CAS  PubMed  Google Scholar 

  72. Whitehead MW, et al. A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut. 1999;45(1):129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nyblom H, et al. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004;39(4):336–9.

    Article  CAS  PubMed  Google Scholar 

  74. Botros M, Sikaris KA. The de ritis ratio: the test of time. Clin Biochem Rev. 2013;34(3):117–30.

    PubMed  PubMed Central  Google Scholar 

  75. Naftalin L, et al. Observations on the site of origin of serum γ-glutamyl-transpeptidase. Clin Chim Acta. 1969;26(2):297–300.

    Article  CAS  PubMed  Google Scholar 

  76. Allen JP, et al. Carbohydrate-deficient transferrin as a measure of immoderate drinking: remaining issues. Alcohol Clin Exp Res. 1994;18(4):799–812.

    Article  CAS  PubMed  Google Scholar 

  77. Conigrave KM, et al. Traditional markers of excessive alcohol use. Addiction. 2003;98(Suppl 2):31–43.

    Article  PubMed  Google Scholar 

  78. Orum MH, Kara MZ. Platelet to lymphocyte ratio (PLR) in alcohol use disorder. J Immunoassay Immunochem. 2020;41(2):184–94.

    Article  CAS  PubMed  Google Scholar 

  79. Helander, A. and B. Tabakoff, Biochemical markers of alcohol use and abuse: experiences from the Pilot Study of the WHO/ISBRA Collaborative Project on state and trait markers of alcohol. International Society for Biomedical Research on Alcoholism. Alcohol Alcohol, 1997. 32(2): p. 133–44.

  80. Kuivenhoven JA, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med. 1998;338(2):86–93.

    Article  CAS  PubMed  Google Scholar 

  81. Hannuksela M, et al. Reduction in the concentration and activity of plasma cholesteryl ester transfer protein by alcohol. J Lipid Res. 1992;33(5):737–44.

    Article  CAS  PubMed  Google Scholar 

  82. Boekholdt SM, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation. 2005;111(3):278–87.

    Article  CAS  PubMed  Google Scholar 

  83. Waszkiewicz N, et al. Glycoconjugates in the detection of alcohol abuse. Biochem Soc Trans. 2011;39(1):365–9.

    Article  CAS  PubMed  Google Scholar 

  84. Tollefson JH, Liu A, Albers JJ. Regulation of plasma lipid transfer by the high-density lipoproteins. Am J Physiol. 1988;255(6 Pt 1):E894-902.

    CAS  PubMed  Google Scholar 

  85. Antoniello S, et al. Beta-hexosaminidase activity in alcoholic fatty liver and in CCl4-induced liver fibrosis of the rat. Enzyme. 1989;42(2):68–72.

    Article  CAS  PubMed  Google Scholar 

  86. Bell RL, et al. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol. 2015;20(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  87. Petralia MC, et al. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med. 2020;19(3):1755–62.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Diane I. Cooper from the National Institutes of Health (NIH) Library for bibliographic assistance.

Funding

LL and MF are supported by the NIH intramural funding ZIA-AA000218 and ZIA-DA000635 (Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section – PI: LL), jointly supported by the NIDA Intramural Research Program and the NIAAA Division of Intramural Clinical and Biological Research. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Farokhnia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, J.C., Leggio, L. & Farokhnia, M. Blood Biomarkers of Alcohol Use: A Scoping Review. Curr Addict Rep 8, 500–508 (2021). https://doi.org/10.1007/s40429-021-00402-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-021-00402-7

Keywords

Navigation