Skip to main content
Log in

Antisense Approach to Inflammatory Bowel Disease: Prospects and Challenges

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite the great success of anti-tumour necrosis factor-based therapies, the treatment of Crohn’s disease (CD) and ulcerative colitis (UC) still remains a challenge for clinicians, as these drugs are not effective in all patients, their efficacy may wane with time, and their use can increase the risk of adverse events and be associated with the development of new immune-mediated diseases. Therefore, new therapeutic targets are currently being investigated both in pre-clinical studies and in clinical trials. Among the technologies used to build new therapeutic compounds, the antisense oligonucleotide (ASO) approach is slowly gaining space in the field of inflammatory bowel diseases (IBDs), and three ASOs have been investigated in clinical trials. Systemic administration of alicaforsen targeting intercellular adhesion molecule-1, a protein involved in the recruitment of leukocytes to inflamed intestine, was not effective in CD, even though the same compound was of benefit when given as an enema to UC patients. DIMS0150, targeting nuclear factor (NF) κB-p65, a transcription factor that promotes pro-inflammatory responses, was very promising in pre-clinical studies and is currently being tested in clinical trials. Oral mongersen, targeting Smad7, an intracellular protein that inhibits transforming growth factor (TGF)-β1 activity, was safe and well tolerated by CD patients, and the results of a phase II clinical trial showed the efficacy of the drug in inducing clinical remission in patients with active disease. In this leading article, we review the rationale and the clinical data available regarding these three agents, and we discuss the challenge of using ASOs in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34. doi:10.1038/nature06005.

    Article  CAS  PubMed  Google Scholar 

  2. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78. doi:10.1056/NEJMra0804647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. MacDonald TT, Vossenkaemper A, Fantini M, Monteleone G. Reprogramming the immune system in IBD. Dig Dis. 2012;30(4):392–5. doi:10.1159/000338136.

    Article  PubMed  Google Scholar 

  4. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306. doi:10.1038/nature10208.

    Article  CAS  PubMed  Google Scholar 

  5. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev. 2003;3(7):521–33. doi:10.1038/nri1132.

    CAS  Google Scholar 

  6. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1756–67. doi:10.1053/j.gastro.2011.02.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology. 2011;140(6):1768–75. doi:10.1053/j.gastro.2011.02.047.

    Article  CAS  PubMed  Google Scholar 

  8. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 2014;7(1):6–19. doi:10.1038/mi.2013.73.

    Article  CAS  PubMed  Google Scholar 

  9. Peyrin-Biroulet L, Loftus EV Jr, Colombel JF, Sandborn WJ. Long-term complications, extraintestinal manifestations, and mortality in adult Crohn’s disease in population-based cohorts. Inflamm Bowel Dis. 2011;17(1):471–8. doi:10.1002/ibd.21417.

    Article  PubMed  Google Scholar 

  10. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91(4):854–62.

    Article  CAS  PubMed  Google Scholar 

  11. Marafini I, Sedda S, Pallone F, Monteleone G. Targeting integrins and adhesion molecules to combat inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(10):1885–9. doi:10.1097/MIB.0000000000000091.

    Article  PubMed  Google Scholar 

  12. Yacyshyn BR, Shanahan WR Jr. Making sense of antisense. Can J Gastroenterol. 1999;13(9):745–51.

    CAS  PubMed  Google Scholar 

  13. Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 2011;39(11):4795–807. doi:10.1093/nar/gkr089.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lorenz P, Baker BF, Bennett CF, Spector DL. Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies. Mol Biol Cell. 1998;9(5):1007–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 2000;28(2):582–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000;10(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  17. Di Cresce C, Koropatnick J. Antisense treatment in human prostate cancer and melanoma. Curr Cancer Drug Targets. 2010;10(6):555–65.

    Article  PubMed  Google Scholar 

  18. Banerjee D. Genasense (Genta Inc). Curr Opin Investig Drugs. 2001;2(4):574–80.

    CAS  PubMed  Google Scholar 

  19. Yu B, Mao Y, Bai LY, Herman SE, Wang X, Ramanunni A, et al. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood. 2013;121(1):136–47. doi:10.1182/blood-2012-01-407742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Paz-Ares L, Douillard JY, Koralewski P, Manegold C, Smit EF, Reyes JM, et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2006;24(9):1428–34. doi:10.1200/JCO.2005.04.3299.

    Article  CAS  PubMed  Google Scholar 

  21. Stein CA, Wu S, Voskresenskiy AM, Zhou JF, Shin J, Miller P, et al. G3139, an anti-Bcl-2 antisense oligomer that binds heparin-binding growth factors and collagen I, alters in vitro endothelial cell growth and tubular morphogenesis. Clin Cancer Res. 2009;15(8):2797–807. doi:10.1158/1078-0432.CCR-08-2610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Prakash TP, Bhat B. 2’-Modified oligonucleotides for antisense therapeutics. Curr Top Med Chem. 2007;7(7):641–9.

    Article  CAS  PubMed  Google Scholar 

  23. Prakash TP. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers. 2011;8(9):1616–41. doi:10.1002/cbdv.201100081.

    Article  CAS  PubMed  Google Scholar 

  24. Hart AL, Ng SC, Mann E, Al-Hassi HO, Bernardo D, Knight SC. Homing of immune cells: role in homeostasis and intestinal inflammation. Inflamm Bowel Dis. 2010;16(11):1969–77. doi:10.1002/ibd.21304.

    Article  PubMed  Google Scholar 

  25. Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003;24(6):327–34.

    Article  CAS  PubMed  Google Scholar 

  26. Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol. 1991;147(9):2913–21.

    CAS  PubMed  Google Scholar 

  27. Glover JM, Leeds JM, Mant TG, Amin D, Kisner DL, Zuckerman JE, et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). JPharmacol Exp Ther. 1997;282(3):1173–80.

    CAS  Google Scholar 

  28. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, Tami JA, Bennett CF, Kisner DL, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology. 1998;114(6):1133–42.

    Article  CAS  PubMed  Google Scholar 

  29. Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology. 2001;120(6):1339–46.

    Article  CAS  PubMed  Google Scholar 

  30. Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut. 2002;51(1):30–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Miner P, Wedel M, Bane B, Bradley J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment Pharmacol Ther. 2004;19(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  32. van Deventer SJ, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB Jr. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2006;23(10):1415–25. doi:10.1111/j.1365-2036.2006.02910.x.

    Article  PubMed  Google Scholar 

  33. Miner PB Jr, Wedel MK, Xia S, Baker BF. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther. 2006;23(10):1403–13. doi:10.1111/j.1365-2036.2006.02837.x.

    Article  CAS  PubMed  Google Scholar 

  34. Miner PB Jr, Geary RS, Matson J, Chuang E, Xia S, Baker BF, et al. Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther. 2006;23(10):1427–34. doi:10.1111/j.1365-2036.2006.02909.x.

    Article  CAS  PubMed  Google Scholar 

  35. van Deventer SJ, Tami JA, Wedel MK. A randomised, controlled, double blind, escalating dose study of alicaforsen enema in active ulcerative colitis. Gut. 2004;53(11):1646–51. doi:10.1136/gut.2003.036160.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vegter S, Tolley K, Wilson Waterworth T, Jones T, Jones H, Jewell D. Meta-analysis using individual patient data: efficacy and durability of topical alicaforsen for the treatment of active ulcerative colitis. Aliment Pharmacol Ther. 2013;38(3):284–93. doi:10.1111/apt.12369.

    Article  CAS  PubMed  Google Scholar 

  37. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998;115(2):357–69.

    Article  CAS  PubMed  Google Scholar 

  38. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut. 1998;42(4):477–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2(9):998–1004.

    Article  CAS  PubMed  Google Scholar 

  40. Murano M, Maemura K, Hirata I, Toshina K, Nishikawa T, Hamamoto N, et al. Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin Exp Immunol. 2000;120(1):51–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lawrance IC, Wu F, Leite AZ, Willis J, West GA, Fiocchi C, et al. A murine model of chronic inflammation-induced intestinal fibrosis down-regulated by antisense NF-kappa B. Gastroenterology. 2003;125(6):1750–61.

    Article  CAS  PubMed  Google Scholar 

  42. Loftberg R, Neurath M, Ost A, Petterson S. Topical NF-κB p65 antisense oligonucleotides in patients with active distal colonic IBD: a randomized, controlled pilot trial. Gastroenterology. 2002;122:A60.

    Article  Google Scholar 

  43. Tahara K, Samura S, Tsuji K, Yamamoto H, Tsukada Y, Bando Y, et al. Oral nuclear factor-kappaB decoy oligonucleotides delivery system with chitosan modified poly(d, l-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials. 2011;32(3):870–8. doi:10.1016/j.biomaterials.2010.09.034.

    Article  CAS  PubMed  Google Scholar 

  44. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev. 2002;2(1):46–53. doi:10.1038/nri704.

    CAS  Google Scholar 

  45. Kulkarni AB, Karlsson S. Transforming growth factor-beta 1 knockout mice: a mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 1993;143(1):3–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183(6):2605–16.

    Article  CAS  PubMed  Google Scholar 

  47. Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-beta1 plasmid: TGF-beta1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor beta2 chain downregulation. J Exp Med. 2000;192(1):41–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  49. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through Smad proteins. Nature. 1997;390(6659):465–71. doi:10.1038/37284.

    Article  CAS  PubMed  Google Scholar 

  50. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Investig. 2001;108(4):601–9. doi:10.1172/JCI12821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Boirivant M, Pallone F, Di Giacinto C, Fina D, Monteleone I, Marinaro M, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131(6):1786–98. doi:10.1053/j.gastro.2006.09.016.

    Article  CAS  PubMed  Google Scholar 

  52. Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–6. doi:10.1038/mt.2011.290.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zorzi F, Calabrese E, Monteleone I, Fantini M, Onali S, Biancone L, et al. A phase 1 open-label trial shows that Smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012;36(9):850–7. doi:10.1111/apt.12051.

    CAS  PubMed  Google Scholar 

  54. Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, et al. Mongersen, an oral Smad7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13. doi:10.1056/NEJMoa1407250.

    Article  CAS  PubMed  Google Scholar 

  55. Gao D, Wagner AH, Fankhaenel S, Stojanovic T, Schweyer S, Panzner S, et al. CD40 antisense oligonucleotide inhibition of trinitrobenzene sulphonic acid induced rat colitis. Gut. 2005;54(1):70–7. doi:10.1136/gut.2003.029587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Arranz A, Reinsch C, Papadakis KA, Dieckmann A, Rauchhaus U, Androulidaki A, et al. Treatment of experimental murine colitis with CD40 antisense oligonucleotides delivered in amphoteric liposomes. J Control Release. 2013;165(3):163–72. doi:10.1016/j.jconrel.2012.11.008.

    Article  CAS  PubMed  Google Scholar 

  57. Goto A, Arimura Y, Shinomura Y, Imai K, Hinoda Y. Antisense therapy of MAdCAM-1 for trinitrobenzene sulfonic acid-induced murine colitis. Inflamm Bowel Dis. 2006;12(8):758–65.

    Article  PubMed  Google Scholar 

  58. de Jong YP, Abadia-Molina AC, Satoskar AR, Clarke K, Rietdijk ST, Faubion WA, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2(11):1061–6. doi:10.1038/ni720.

    Article  PubMed  Google Scholar 

  59. Murakami H, Akbar SM, Matsui H, Onji M. Macrophage migration inhibitory factor in the sera and at the colonic mucosa in patients with ulcerative colitis: clinical implications and pathogenic significance. Eur J Clin Investig. 2001;31(4):337–43.

    Article  CAS  Google Scholar 

  60. Nishihira J. Molecular function of macrophage migration inhibitory factor and a novel therapy for inflammatory bowel disease. Ann N Y Acad Sci. 2012;1271:53–7. doi:10.1111/j.1749-6632.2012.06735.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Takedatsu H, Mitsuyama K, Mochizuki S, Kobayashi T, Sakurai K, Takeda H, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther. 2012;20(6):1234–41. doi:10.1038/mt.2012.24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Baert F, Noman M, Vermeire S, Van Assche G, G GH, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8. doi:10.1056/NEJMoa020888.

    Article  CAS  PubMed  Google Scholar 

  63. Myers KJ, Murthy S, Flanigan A, Witchell DR, Butler M, Murray S, et al. Antisense oligonucleotide blockade of tumor necrosis factor-alpha in two murine models of colitis. J Pharmacol Exp Ther. 2003;304(1):411–24. doi:10.1124/jpet.102.040329.

    Article  CAS  PubMed  Google Scholar 

  64. Zuo L, Huang Z, Dong L, Xu L, Zhu Y, Zeng K, et al. Targeting delivery of anti-TNF alpha oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut. 2010;59(4):470–9. doi:10.1136/gut.2009.184556.

    Article  CAS  PubMed  Google Scholar 

  65. Huang Z, Gan J, Jia L, Guo G, Wang C, Zang Y, et al. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials. 2015;48:26–36. doi:10.1016/j.biomaterials.2015.01.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Declaration of personal interests

GM has filed a patent related to the treatment of IBD with Smad7 ASOs. The remaining authors have no conflicts of interest.

No funding was used to support the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Monteleone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marafini, I., Di Fusco, D., Calabrese, E. et al. Antisense Approach to Inflammatory Bowel Disease: Prospects and Challenges. Drugs 75, 723–730 (2015). https://doi.org/10.1007/s40265-015-0391-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0391-0

Keywords

Navigation