Skip to main content

Advertisement

Log in

Pan-cancer analysis reveals homologous recombination deficiency score as a predictive marker for immunotherapy responders

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The immune context of the tumor microenvironment (TME) is critical for effective immunotherapy. Nonetheless, DNA-based biomarkers for the immune-sensitive TME and the identification of immune checkpoint inhibitor (ICI) responders are under-explored. This study aims to comprehensively landscape the homologous recombination deficiency (HRD) score, an emerging hallmark for tumor genome instability that triggers immune responsiveness across major cancer types, and to unveil their link to the TME and immunotherapeutic response. The HRD-associated genomic scars were characterized in 9088 tumor samples across 32 cancer types from TCGA. We evaluated the HRD score’s performance in classifying ICI responders using an independent breast cancer cohort (GSE87049) and 11 in vivo murine mammary tumor models treated with anti-PD1/CTLA4 regimen (GSE124821). This study revealed a broad association between HRD-high genotype and neoantigenesis in the major cancer types including bladder cancer, breast cancer, head and neck squamous carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian cancer, and sarcoma. Tumors with high HRD score bears increased leukocyte infiltration and lymphocyte fraction and demonstrated immune-sensitive microenvironment. The tumor immune dysfunction and exclusion (TIDE) model further confirmed HRD score-high genotype as a potential predictor for ICI immunotherapy responders in breast cancer. In conclusion, tumors with high HRD score exhibit an immune-sensitive TME. The HRD-high genotype is a promising marker for identifying ICI therapy responders among breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

ICI:

Immune checkpoint inhibitors

TME:

Tumor microenvironment

TMB:

Tumor mutation burden

MSI:

Microsatellite instability

GEP:

Gene expression profile

PARPi:

PARP protein inhibition

HRD:

Homologous recombination deficiency

TCGA:

The Cancer Genomic Atlas

BRCA:

Breast invasive carcinoma

CCLE:

Cancer Cell Line Encyclopedia

LOH:

Loss of heterogeneity

TAI:

Telomeric-allelic imbalance

LST:

Large-scale state transitions

DEG:

Differentially expressed gene

tSNE:

T-distributed stochastic neighbor embedding

TIDE:

Tumor immune dysfunction and exclusion

MDSC:

Myeloid-derived suppressor cell

CTL:

Cytotoxic T lymphocyte

TAM-M2:

Tumor-associated macrophages-M2

CAF:

Cancer-associated fibroblast

OV:

Ovarian serous cystadenocarcinoma

UCS:

Uterine carcinosarcoma

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

ESCA:

Esophageal carcinoma

SARC:

Sarcoma

BLCA:

Bladder urothelial carcinoma

STAD:

Stomach adenocarcinoma

HNSC:

Head and neck squamous carcinoma

PAAD:

Pancreatic ductal adenocarcinoma

PRAD:

Prostate adenocarcinoma (PRAD)

COAD:

Colon adenocarcinoma

UCEC:

Uterine corpus endometrial carcinoma

References

  1. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–86. https://doi.org/10.1056/NEJMoa1716078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615.

    Article  CAS  PubMed  Google Scholar 

  4. Ribas A. Releasing the brakes on cancer immunotherapy. N Engl J Med. 2015;373(16):1490–2. https://doi.org/10.1056/NEJMp1510079.

    Article  PubMed  Google Scholar 

  5. Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 2017;23(10):2491–505. https://doi.org/10.1158/1078-0432.CCR-16-2680.

    Article  CAS  PubMed  Google Scholar 

  6. Mardis ER. Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response. Genome Med. 2019;11(1):71. https://doi.org/10.1186/s13073-019-0684-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palumbo A Jr, Da Costa NO, Bonamino MH, Pinto LF, Nasciutti LE. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer. 2015;14:145. https://doi.org/10.1186/s12943-015-0409-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J Natl Cancer Inst. 2020;112(7):708–19. https://doi.org/10.1093/jnci/djz208.

    Article  CAS  PubMed  Google Scholar 

  9. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018. https://doi.org/10.1126/science.aar3593.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6. https://doi.org/10.1038/s41588-018-0312-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–75. https://doi.org/10.1038/s41575-019-0126-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44–56. https://doi.org/10.1093/annonc/mdy495.

    Article  CAS  PubMed  Google Scholar 

  13. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51. https://doi.org/10.1016/S1470-2045(16)30406-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jamieson NB, Maker AV. Gene-expression profiling to predict responsiveness to immunotherapy. Cancer Gene Ther. 2017;24(3):134–40. https://doi.org/10.1038/cgt.2016.63.

    Article  CAS  PubMed  Google Scholar 

  15. Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.1549.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714. https://doi.org/10.1038/s41580-019-0152-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–20. https://doi.org/10.1038/nrc.2015.21.

    Article  CAS  PubMed  Google Scholar 

  18. Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42. https://doi.org/10.1038/nrc.2015.4.

    Article  CAS  PubMed  Google Scholar 

  19. Tumiati M, Hietanen S, Hynninen J, Pietila E, Farkkila A, Kaipio K, et al. A functional homologous recombination assay predicts primary chemotherapy response and long-term survival in ovarian cancer patients. Clin Cancer Res. 2018;24(18):4482–93. https://doi.org/10.1158/1078-0432.CCR-17-3770.

    Article  CAS  PubMed  Google Scholar 

  20. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306(14):1557–65. https://doi.org/10.1001/jama.2011.1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. https://doi.org/10.1126/science.aam7344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30(4):558–66. https://doi.org/10.1093/annonc/mdz012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Martin A, Pothuri B, Vergote I, DePont CR, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402. https://doi.org/10.1056/NEJMoa1910962.

    Article  CAS  PubMed  Google Scholar 

  24. Ray-Coquard I, Pautier P, Pignata S, Perol D, Gonzalez-Martin A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.

    Article  CAS  PubMed  Google Scholar 

  25. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73. https://doi.org/10.1158/1078-0432.CCR-15-2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16(6):475. https://doi.org/10.1186/s13058-014-0475-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–8. https://doi.org/10.1038/s41586-019-1186-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romero-Cordoba SL, Salido-Guadarrama I, Rebollar-Vega R, Bautista-Pina V, Dominguez-Reyes C, Tenorio-Torres A, et al. Comprehensive omic characterization of breast cancer in Mexican-Hispanic women. Nat Commun. 2021;12(1):2245. https://doi.org/10.1038/s41467-021-22478-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, Mott KR, et al. B Cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell. 2019;179(5):1191-206 e21. https://doi.org/10.1016/j.cell.2019.10.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, et al. Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. NPJ Breast Cancer. 2018;4:16. https://doi.org/10.1038/s41523-018-0066-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann Oncol. 2015;26(1):64–70. https://doi.org/10.1093/annonc/mdu479.

    Article  CAS  PubMed  Google Scholar 

  32. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, et al. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep. 2018;23(1):239–546. https://doi.org/10.1016/j.celrep.2018.03.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. https://doi.org/10.1186/s13073-017-0424-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–3014. https://doi.org/10.1016/j.immuni.2018.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.

    Article  CAS  PubMed  Google Scholar 

  36. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, et al. The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med. 2020;12(1):86. https://doi.org/10.1186/s13073-020-00783-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8. https://doi.org/10.1038/s41591-018-0136-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alexandrov LB, Nik-Zainal S, Siu HC, Leung SY, Stratton MR. A mutational signature in gastric cancer suggests therapeutic strategies. Nat Commun. 2015;6:8683. https://doi.org/10.1038/ncomms9683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, et al. Utility of homologous recombination deficiency biomarkers across cancer types. JCO Precis Oncol. 2021. https://doi.org/10.1200/PO.21.00141.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64. https://doi.org/10.1016/j.tcb.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  43. Piazza A, Heyer WD. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol. 2019;29(2):135–49. https://doi.org/10.1016/j.tcb.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  44. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo S, Deng CX. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 2018;14(14):2083–93. https://doi.org/10.7150/ijbs.25720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golshan M, Loibl S, Wong SM, Houber JB, O’Shaughnessy J, Rugo HS, et al. Breast conservation after neoadjuvant chemotherapy for triple-negative breast cancer: surgical results from the brightness randomized clinical trial. JAMA Surg. 2020;155(3): e195410. https://doi.org/10.1001/jamasurg.2019.5410.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Evron E, Ben-David AM, Goldberg H, Fried G, Kaufman B, Catane R, et al. Prophylactic irradiation to the contralateral breast for BRCA mutation carriers with early-stage breast cancer. Ann Oncol. 2019;30(3):412–7. https://doi.org/10.1093/annonc/mdy515.

    Article  CAS  PubMed  Google Scholar 

  48. Poggio F, Bruzzone M, Ceppi M, Ponde NF, La Valle G, Del Mastro L, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(7):1497–508. https://doi.org/10.1093/annonc/mdy127.

    Article  CAS  PubMed  Google Scholar 

  49. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. https://doi.org/10.1056/NEJMoa1706450.

    Article  CAS  PubMed  Google Scholar 

  50. Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T, et al. Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet. 2006;78(6):961–72. https://doi.org/10.1086/504090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hemalatha SK, Sengodan SK, Nadhan R, Dev J, Sushama RR, Somasundaram V, et al. Brcal defective breast cancer cells induce in vitro transformation of cancer associated fibroblasts (CAFs) to metastasis associated fibroblasts (MAF). Sci Rep. 2018;8(1):13903. https://doi.org/10.1038/s41598-018-32370-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ryan D, Paul BT, Koziol J, ElShamy WM. The pro- and anti-tumor roles of mesenchymal stem cells toward BRCA1-IRIS-overexpressing TNBC cells. Breast Cancer Res. 2019;21(1):53. https://doi.org/10.1186/s13058-019-1131-2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Loibl S, Weber KE, Timms KM, Elkin EP, Hahnen E, Fasching PA, et al. Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response-final results from GeparSixto. Ann Oncol. 2018;29(12):2341–7. https://doi.org/10.1093/annonc/mdy460.

    Article  CAS  PubMed  Google Scholar 

  54. Mayer EL, Abramson V, Jankowitz R, Falkson C, Marcom PK, Traina T, et al. TBCRC 030: a phase II study of preoperative cisplatin versus paclitaxel in triple-negative breast cancer: evaluating the homologous recombination deficiency (HRD) biomarker. Ann Oncol. 2020;31(11):1518–25. https://doi.org/10.1016/j.annonc.2020.08.2064.

    Article  CAS  PubMed  Google Scholar 

  55. Fasching PA, Link T, Hauke J, Seither F, Jackisch C, Klare P, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann Oncol. 2021;32(1):49–57. https://doi.org/10.1016/j.annonc.2020.10.471.

    Article  CAS  PubMed  Google Scholar 

  56. Samstein RM, Krishna C, Ma X, Pei X, Lee K-W, Makarov V, et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nature Cancer. 2020;1(12):1188–203.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Minussi DC, Nicholson MD, Ye H, Davis A, Wang K, Baker T, et al. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature. 2021. https://doi.org/10.1038/s41586-021-03357-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879-931e3. https://doi.org/10.1016/j.cell.2018.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Paolis E, De Bonis M, Concolino P, Piermattei A, Fagotti A, Urbani A, et al. Droplet digital PCR for large genomic rearrangements detection: a promising strategy in tissue BRCA1 testing. Clin Chim Acta. 2021;513:17–24. https://doi.org/10.1016/j.cca.2020.12.001.

    Article  CAS  PubMed  Google Scholar 

  60. Glodzik D, Bosch A, Hartman J, Aine M, Vallon-Christersson J, Reutersward C, et al. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nat Commun. 2020;11(1):3747. https://doi.org/10.1038/s41467-020-17537-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010;28(22):3555–61. https://doi.org/10.1200/JCO.2009.27.5719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mulligan JM, Hill LA, Deharo S, Irwin G, Boyle D, Keating KE, et al. Identification and validation of an anthracycline/cyclophosphamide-based chemotherapy response assay in breast cancer. J Natl Cancer Inst. 2014;106(1):djt335. https://doi.org/10.1093/jnci/djt335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castroviejo-Bermejo M, Cruz C, Llop-Guevara A, Gutierrez-Enriquez S, Ducy M, Ibrahim YH, et al. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol Med. 2018. https://doi.org/10.15252/emmm.201809172.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stover EH, Fuh K, Konstantinopoulos PA, Matulonis UA, Liu JF. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol. 2020;159(3):887–98. https://doi.org/10.1016/j.ygyno.2020.09.029.

    Article  CAS  PubMed  Google Scholar 

  65. Von Minckwitz G, Timms K, Untch M, Elkin EP, Fasching PA, Schneeweiss A et al. Prediction of pathological complete response (pCR) by homologous recombination deficiency (HRD) after carboplatin-containing neoadjuvant chemotherapy in patients with TNBC: Results from GeparSixto. American Society of Clinical Oncology; 2015.

  66. Kim SJ, Sota Y, Naoi Y, Honma K, Kagara N, Miyake T, et al. Determining homologous recombination deficiency scores with whole exome sequencing and their association with responses to neoadjuvant chemotherapy in breast cancer. Transl Oncol. 2021;14(2): 100986. https://doi.org/10.1016/j.tranon.2020.100986.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the contributions of The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and the National Center for Biotechnology Information Sequence Read Archive (NCBI-SRA) for providing free access to online data. We thank Dr. Anthony Brickner at the University of Pittsburgh for the language editing.

Funding

This study was supported by the National Natural Science Foundation of China [81802993, 82072367], Shanghai Municipal Key Clinical Specialty [shslczdzk03303] and the Innovation Group Project of Shanghai Municipal Health Commission [2019CXJQ03].

Author information

Authors and Affiliations

Authors

Contributions

CY, XMT, XJZ, YMC, TTH, HTZ, MG, ZXM, and ZYW contributed to the study concept and design. CY, ZZJ, ZYW, and XJZ: acquisition, analysis, and validation of data; YMC, TTH and HTZ: data curation; CY, ZYW, XMT, and XJZ: drafting the manuscript and revised; MG, XMZ and WZY: supervision, project administration; MG and ZYW: funding acquisition. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ming Guan, Xiuming Zhang or Zhiyuan Wu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethics approval

The ethical approval is not applicable as all data in this study were downloaded from public databases (TCGA, CCLE, SRA, and GEO).

Consent to participate

The data processing met the TCGA, CCLE, and NCBI publication guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, Z., Tang, X. et al. Pan-cancer analysis reveals homologous recombination deficiency score as a predictive marker for immunotherapy responders. Human Cell 35, 199–213 (2022). https://doi.org/10.1007/s13577-021-00630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00630-z

Keywords

Navigation