Skip to main content

Advertisement

Log in

The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment

  • Review
  • Published:
Tumor Biology

Abstract

Despite recent progresses in tumor therapy and increased knowledge in tumor biology, tumor remains a common and lethal disease worldwide. Cancer stem cells (CSCs) are a subset of cancer cells with a stem cell-like ability, which may drive tumor growth and recurrence and are resistant to many current anticancer treatments. Solid tumors are regarded as “organs” which are comprised of cancer cells and the tumor stroma. The tumor microenvironment makes up the stroma of the tumor, which occupies the majority of the tumor mass, including the extracellular matrix (ECM), mesenchymal stem cells (MSCs), endothelial cells, immune cells, and, what is more, networks of cytokines and growth factors. The microenvironment or niche surrounding CSCs largely governs their cellular fate. Recent work has revealed that the microenvironment supports CSC self-renewal and simultaneously serves as a physical barrier to drug delivery. The tumor microenvironment plays pivotal roles in each stage of tumor development. Knowledge about the interactions of CSCs with their microenvironment would seem to be of most importance for developing new treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  3. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  5. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annual Rev Med. 2007;58:267–84.

    Article  CAS  Google Scholar 

  6. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124:1111–5.

    Article  CAS  PubMed  Google Scholar 

  7. Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331:57–66.

    Article  CAS  PubMed  Google Scholar 

  8. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011;121:3804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.

    Article  CAS  PubMed  Google Scholar 

  10. Xie T, Li L. Stem cells and their niche: an inseparable relationship. Development. 2007;134:2001–6.

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment. Ochsner J. 2013;13:109–18.

    PubMed  PubMed Central  Google Scholar 

  12. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology 2011;3. doi:10.1101/cshperspect.a005058.

  14. Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108:755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71:614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PloS One. 2012;7:e45590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr. 2012;6:220–30.

    Article  Google Scholar 

  19. Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiol : J Immunopathol, Mol Cell Biol. 2012;79:290–306.

    Article  CAS  Google Scholar 

  20. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res. 2012;2:529–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67:3560–4.

    Article  CAS  PubMed  Google Scholar 

  23. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.

    Article  CAS  PubMed  Google Scholar 

  24. Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 2010;70:9969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23:171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sigurdsson V, Hilmarsdottir B, Sigmundsdottir H, Fridriksdottir AJ, Ringner M, Villadsen R, et al. Endothelial induced EMT in breast epithelial cells with stem cell properties. PloS One. 2011;6:e23833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  28. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.

    Article  CAS  PubMed  Google Scholar 

  29. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73:1128–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol. 2012;189:444–53.

    Article  CAS  PubMed  Google Scholar 

  31. Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells. Int J Cancer J Int du Cancer. 2012;131:1491–8.

    Article  CAS  Google Scholar 

  32. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Investig. 2010;120:485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig. 2007;117:3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma Y, Liang D, Liu J, Axcrona K, Kvalheim G, Giercksky KE, et al. Synergistic effect of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Tumour Biol : J Int Soc Oncodevelopmental Biol Med. 2012;33:967–78.

    Article  CAS  Google Scholar 

  35. Yi SY, Hao YB, Nan KJ, Fan TL. Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev. 2012;39:290–6.

    Article  PubMed  Google Scholar 

  36. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999;18:5356–62.

    Article  CAS  PubMed  Google Scholar 

  37. Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J. 2013;2013:417413.

    Google Scholar 

  38. Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PloS One. 2013;8:e60687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye J, Wu D, Shen J, Wu P, Ni C, Chen J, et al. Enrichment of colorectal cancer stem cells through epithelial–mesenchymal transition via CDH1 knockdown. Mol Med Rep. 2012;6:507–12.

    CAS  PubMed  Google Scholar 

  40. Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012;586:1959–70.

    Article  CAS  PubMed  Google Scholar 

  41. Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18:4514–21.

    Article  CAS  Google Scholar 

  42. Siefert SA, Sarkar R. Matrix metalloproteinases in vascular physiology and disease. Vascular. 2012;20:210–6.

    Article  PubMed  Google Scholar 

  43. Noel A, Gutierrez-Fernandez A, Sounni NE, Behrendt N, Maquoi E, Lund IK, et al. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 2012;3:140.

    PubMed  PubMed Central  Google Scholar 

  44. Justilien V, Regala RP, Tseng IC, Walsh MP, Batra J, Radisky ES, et al. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PloS One. 2012;7:e35040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene. 2013. doi:10.1038/onc.2013.121

  46. Li P, Zhou C, Xu L, Xiao H. Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci. 2013;10:399–407.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, et al. Hypoxia potentiates glioma-mediated immunosuppression. PloS One. 2011;6:e16195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18:4266–76.

    Article  CAS  Google Scholar 

  49. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  50. Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E, et al. Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer J Int du Cancer. 2003;105:176–81.

    Article  CAS  Google Scholar 

  51. Gammon L, Biddle A, Heywood HK, Johannessen AC, Mackenzie IC. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PloS One. 2013;8:e62493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kappler M, Taubert H, Schubert J, Vordermark D, Eckert AW. The real face of HIF1α in the tumor process. Cell Cycle. 2012;11:3932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8:3274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer cell. 2009;15:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013;123:189–205.

    Article  CAS  PubMed  Google Scholar 

  56. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaiswal R, Luk F, Gong J, Mathys JM, Grau GE, Bebawy M. Microparticle conferred microRNA profiles—implications in the transfer and dominance of cancer traits. Mol Cancer. 2012;11:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Science. 2010;123:1603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M. Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PloS One. 2013;8:e61515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. British J Cancer. 2012;106:1320–30.

    Article  CAS  Google Scholar 

  62. Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.

    Article  CAS  PubMed  Google Scholar 

  63. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279:2047–59.

    Article  CAS  PubMed  Google Scholar 

  64. Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI, Chien CS, et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol. 2011;223:482–95.

    Article  CAS  PubMed  Google Scholar 

  65. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leuk : Off J Leukemia Soc Am, Leuk Res Fund, UK. 2006;20:1487–95.

    Article  CAS  Google Scholar 

  66. Yang M, Chen J, Su F, Yu B, Lin L, Liu Y, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial–mesenchymal transition. PloS One. 2012;7:e43272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fabbri M. TLRs as miRNA receptors. Cancer Res. 2012;72:6333–7.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PloS One. 2009;4:e4722.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104:3257–66.

    Article  CAS  PubMed  Google Scholar 

  71. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chumsri S, Phatak P, Edelman MJ, Khakpour N, Hamburger AW, Burger AM. Cancer stem cells and individualized therapy. Cancer Genomics Proteomics. 2007;4:165–74.

    CAS  PubMed  Google Scholar 

  73. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.

    Article  CAS  PubMed  Google Scholar 

  74. Sottoriva A, Sloot PM, Medema JP, Vermeulen L. Exploring cancer stem cell niche directed tumor growth. Cell Cycle. 2010;9:1472–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ni C, Huang J. Dynamic regulation of cancer stem cells and clinical challenges. Clin Transl Oncol : Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex. 2013;15:253–8.

    Article  Google Scholar 

  76. Gu JW, Rizzo P, Pannuti A, Golde T, Osborne B, Miele L. Notch signals in the endothelium and cancer “stem-like” cells: opportunities for cancer therapy. Vasc Cell. 2012;4:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 91019005, no. 81272672) and Zhejiang Provincial Natural Science Foundation of China (no. Y2110034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Chen or Jian Huang.

Additional information

Jun Ye, Dang Wu, and Pin Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Wu, D., Wu, P. et al. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol. 35, 3945–3951 (2014). https://doi.org/10.1007/s13277-013-1561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1561-x

Keywords

Navigation