Skip to main content

Advertisement

Log in

The current status of positron emission mammography in breast cancer diagnosis

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Mammography is currently the standard breast cancer screening procedure, even though it is constrained by low specificity in the detection of malignancy and low sensitivity in women with dense breast tissue. Modern imaging modalities, such as magnetic resonance imaging (MRI), have been developed in an effort to replace or complement mammography, because the early detection of breast cancer is critical for efficient treatment and long-term survival of patients. Nuclear medicine imaging technology has been introduced in the field of oncology with the development of positron emission tomography (PET), positron emission tomography/computed tomography (PET/CT) and, ultimately, positron emission mammography (PEM). PET offers the advantage of precise diagnosis, by measuring metabolism with the use of a radiotracer and identifying changes at the cellular level. PET/CT imaging allows for a more accurate assessment by merging the anatomic localization to the functional image. However, both techniques have not yet been established as diagnostic tools in early breast cancer detection, primarily because of low sensitivity, especially for sub-centimeter and low-grade tumors. PEM, a breast-specific device with increased spatial resolution, has been developed in order to overcome these limitations. It has demonstrated higher detectability than PET/CT and comparable or better sensitivity than MRI. The ability to target the lesions visible in PEM with PEM-guided breast biopsy systems adds to its usability in the early diagnosis of breast cancer. The results from recent studies summarized in this review indicate that PEM may prove to be a useful first-line diagnostic tool, although further evaluation and improvement are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2012;61:409–18.

    Google Scholar 

  2. Moadel RM. Breast cancer imaging devices. Semin Nucl Med. 2011;41:229–41.

    Article  PubMed  Google Scholar 

  3. Halladay JR, Yankaskas BC, Bowling JM, Alexander C. Positive predictive value of mammography: comparison of interpretations of screening and diagnostic images by the same radiologist and by different radiologists. AJR Am J Roentgenol. 2010;195:782–5.

    Article  PubMed  Google Scholar 

  4. Berg WA, Blume JD, Adams AM, Jong RA, Barr RG, Lehrer DE, et al. Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666. Radiology. 2010;254:79–87.

    Article  PubMed  Google Scholar 

  5. Jackson VP, Hendrick RE, Feig SA, Kopans DB. Imaging of the radiographically dense breast. Radiology. 1993;188:297–301.

    PubMed  CAS  Google Scholar 

  6. Rijnsburger AJ, Obdeijn IM, Kaas R, Tilanus-Linthorst MM, Boetes C, Loo CE, et al. BRCA1-associated breast cancers present differently from BRCA2-associated and familial cases: long-term follow-up of the Dutch MRISC Screening Study. J Clin Oncol. 2010;28:5265–73.

    Article  PubMed  CAS  Google Scholar 

  7. Bartella L, Liberman L, Morris EA, Dershaw DD. Nonpalpable mammographically occult invasive breast cancers detected by MRI. AJR Am J Roentgenol. 2006;186:865–70.

    Article  PubMed  Google Scholar 

  8. Lee SG, Orel SG, Woo IJ, Cruz-Jove E, Putt ME, Solin LJ, et al. MR imaging screening of the contralateral breast in patients with newly diagnosed breast cancer: preliminary results. Radiology. 2003;226:773–8.

    Article  PubMed  Google Scholar 

  9. Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356:1295–303.

    Article  PubMed  CAS  Google Scholar 

  10. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol. 2003;180:901–10.

    Article  PubMed  Google Scholar 

  11. Houssami N, Ciatto S, Macaskill P, Lord SJ, Warren RM, Dixon JM, et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol. 2008;26:3248–58.

    Article  PubMed  Google Scholar 

  12. Katipamula R, Degnim AC, Hoskin T, Boughey JC, Loprinzi C, Grant CS, et al. Trends in mastectomy rates at the Mayo Clinic Rochester: effect of surgical year and preoperative magnetic resonance imaging. J Clin Oncol. 2009;27:4082–8.

    Article  PubMed  Google Scholar 

  13. Pettit K, Swatske ME, Gao F, Salavaggione L, Gillanders WE, Aft RL, et al. The impact of breast MRI on surgical decision-making: are patients at risk for mastectomy? J Surg Oncol. 2009;100:553–8.

    Article  PubMed  Google Scholar 

  14. Bleicher RJ, Ciocca RM, Egleston BL, Sesa L, Evers K, Sigurdson ER, et al. Association of routine pretreatment magnetic resonance imaging with time to surgery, mastectomy rate, and margin status. J Am Coll Surg. 2009;209:180–7. quiz 294–5.

    Article  PubMed  Google Scholar 

  15. Angarita FA, Acuna SA, Fonseca A, Crystal P, Escallon J. Impact of preoperative breast MRIs on timing of surgery and type of intervention in newly diagnosed breast cancer patients. Ann Surg Oncol. 2010;17(Suppl 3):273–9.

    Article  PubMed  Google Scholar 

  16. Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011;378:1804–11.

    Article  PubMed  Google Scholar 

  17. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  18. Vallabhajosula S, Solnes L, Vallabhajosula B. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med. 2011;41:246–64.

    Article  PubMed  Google Scholar 

  19. Lavayssiere R, Cabee AE, Filmont JE. Positron emission tomography (PET) and breast cancer in clinical practice. Eur J Radiol. 2009;69:50–8.

    Article  PubMed  Google Scholar 

  20. Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV, Kahn S, et al. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2011;38:23–36.

    Article  PubMed  Google Scholar 

  21. Weinberg IN. Applications for positron emission mammography. Phys Med. 2006;21(Suppl 1):132–7.

    Article  PubMed  Google Scholar 

  22. Segaert I, Mottaghy F, Ceyssens S, De Wever W, Stroobants S, Van Ongeval C, et al. Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J. 2010;16:617–24.

    Article  PubMed  Google Scholar 

  23. Avril N, Adler LP. F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin N Am. 2007;45:645–57. vi.

    Article  PubMed  Google Scholar 

  24. Avril N, Dose J, Janicke F, Bense S, Ziegler S, Laubenbacher C, et al. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol. 1996;14:1848–57.

    PubMed  CAS  Google Scholar 

  25. Heinisch M, Gallowitsch HJ, Mikosch P, Kresnik E, Kumnig G, Gomez I, et al. Comparison of FDG-PET and dynamic contrast-enhanced MRI in the evaluation of suggestive breast lesions. Breast. 2003;12:17–22.

    Article  PubMed  CAS  Google Scholar 

  26. Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–502.

    PubMed  CAS  Google Scholar 

  27. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology. 2007;242:360–85.

    Article  PubMed  Google Scholar 

  28. Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33:193–204.

    Article  PubMed  Google Scholar 

  29. Tsujikawa T, Tsuchida T, Yoshida Y, Kurokawa T, Kiyono Y, Okazawa H, et al. Role of PET/CT in gynecological tumors based on the revised FIGO staging classification. Clin Nucl Med. 2011;36:e114–8.

    Article  PubMed  Google Scholar 

  30. Ozkan E, Soydal C, Araz M, Kir KM, Ibis E. The role of 18F-FDG PET/CT in detecting colorectal cancer recurrence in patients with elevated CEA levels. Nucl Med Commun. 2012;33:395–402.

    Article  PubMed  CAS  Google Scholar 

  31. Christensen JA, Nathan MA, Mullan BP, Hartman TE, Swensen SJ, Lowe VJ. Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol. 2006;187:1361–7.

    Article  PubMed  Google Scholar 

  32. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA. 2007;298:2289–95.

    Article  PubMed  CAS  Google Scholar 

  33. Cooper KL, Harnan S, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37:187–98.

    Article  PubMed  CAS  Google Scholar 

  34. Bernsdorf M, Berthelsen AK, Wielenga VT, Kroman N, Teilum D, Binderup T, et al. Preoperative PET/CT in early-stage breast cancer. Ann Oncol. 2012;23:2277–82.

    Article  PubMed  CAS  Google Scholar 

  35. Garami Z, Hascsi Z, Varga J, Dinya T, Tanyi M, Garai I, et al. The value of 18-FDG PET/CT in early-stage breast cancer compared to traditional diagnostic modalities with an emphasis on changes in disease stage designation and treatment plan. Eur J Surg Oncol. 2012;38:31–7.

    Article  PubMed  CAS  Google Scholar 

  36. Alberini JL, Lerebours F, Wartski M, Fourme E, Le Stanc E, Gontier E, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer. 2009;115:5038–47.

    Article  PubMed  Google Scholar 

  37. Walker GV, Niikura N, Yang W, Rohren E, Valero V, Woodward WA, et al. Pretreatment staging positron emission tomography/computed tomography in patients with inflammatory breast cancer influences radiation treatment field designs. Int J Radiat Oncol Biol Phys. 2012;83:1381–6.

    Article  PubMed  Google Scholar 

  38. Yang WT. Advances in imaging of inflammatory breast cancer. Cancer. 2010;116:2755–7.

    Article  PubMed  Google Scholar 

  39. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24:5366–72.

    Article  PubMed  Google Scholar 

  40. Ueda S, Saeki T, Shigekawa T, Omata J, Moriya T, Yamamoto J, et al. (18)F-Fluorodeoxyglucose positron emission tomography optimizes neoadjuvant chemotherapy for primary breast cancer to achieve pathological complete response. Int J Clin Oncol. 2012;17:276–82.

    Google Scholar 

  41. Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N, et al. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer. 2011;11:452.

    Article  PubMed  CAS  Google Scholar 

  42. Park JS, Moon WK, Lyou CY, Cho N, Kang KW, Chung JK. The assessment of breast cancer response to neoadjuvant chemotherapy: comparison of magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography. Acta Radiol. 2011;52:21–8.

    Article  PubMed  Google Scholar 

  43. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O. The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer. 2006;107:2545–51.

    Article  PubMed  Google Scholar 

  44. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G, et al. Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol. 2004;183:479–86.

    Article  PubMed  Google Scholar 

  45. Goerres GW, Michel SC, Fehr MK, Kaim AH, Steinert HC, Seifert B, et al. Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol. 2003;13:1635–44.

    Article  PubMed  Google Scholar 

  46. Grahek D, Montravers F, Kerrou K, Aide N, Lotz JP, Talbot JN. [18F]FDG in recurrent breast cancer: diagnostic performances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging. 2004;31:179–88.

    Article  PubMed  Google Scholar 

  47. Constantinidou A, Martin A, Sharma B, Johnston SR. Positron emission tomography/computed tomography in the management of recurrent/metastatic breast cancer: a large retrospective study from the Royal Marsden Hospital. Ann Oncol. 2011;22:307–14.

    Article  PubMed  CAS  Google Scholar 

  48. Pennant M, Takwoingi Y, Pennant L, Davenport C, Fry-Smith A, Eisinga A, et al. A systematic review of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence. Health Technol Assess. 2010;14:1–103.

    CAS  Google Scholar 

  49. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology™. Breast Cancer V.2.2011.

  50. Thompson CJ, Murthy K, Weinberg IN, Mako F. Feasibility study for positron emission mammography. Med Phys. 1994;21:529–38.

    Article  PubMed  CAS  Google Scholar 

  51. Weinberg I, Majewski S, Weisenberger A, Markowitz A, Aloj L, Majewski L, et al. Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry. Eur J Nucl Med. 1996;23:804–6.

    Article  PubMed  CAS  Google Scholar 

  52. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851–8.

    PubMed  CAS  Google Scholar 

  53. Levine EA, Freimanis RI, Perrier ND, Morton K, Lesko NM, Bergman S, et al. Positron emission mammography: initial clinical results. Ann Surg Oncol. 2003;10:86–91.

    Article  PubMed  Google Scholar 

  54. Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology. 2005;234:527–34.

    Article  PubMed  Google Scholar 

  55. Tafra L, Cheng Z, Uddo J, Lobrano MB, Stein W, Berg WA, et al. Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer. Am J Surg. 2005;190:628–32.

    Article  PubMed  Google Scholar 

  56. Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12:309–23.

    Article  PubMed  Google Scholar 

  57. Eo JS, Chun IK, Paeng JC, Kang KW, Lee SM, Han W, et al. Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast. 2012;21:66–71.

    Article  PubMed  Google Scholar 

  58. Heywang-Kobrunner SH, Viehweg P, Heinig A, Kuchler C. Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol. 1997;24:94–108.

    Article  PubMed  CAS  Google Scholar 

  59. Degani H, Chetrit-Dadiani M, Bogin L, Furman-Haran E. Magnetic resonance imaging of tumor vasculature. Thromb Haemost. 2003;89:25–33.

    PubMed  CAS  Google Scholar 

  60. Tafra L. Positron emission mammography: a new breast imaging device. J Surg Oncol. 2008;97:372–3.

    Article  PubMed  Google Scholar 

  61. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258:59–72.

    Article  PubMed  Google Scholar 

  62. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol. 2012;198:219–32.

    Article  PubMed  Google Scholar 

  63. Kalinyak JE, Schilling K, Berg WA, Narayanan D, Mayberry JP, Rai R, et al. PET-guided breast biopsy. Breast J. 2011;17:143–51.

    Article  PubMed  Google Scholar 

  64. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50:1666–75.

    Article  PubMed  Google Scholar 

  65. Vranjesevic D, Schiepers C, Silverman DH, Quon A, Villalpando J, Dahlbom M, et al. Relationship between 18F-FDG uptake and breast density in women with normal breast tissue. J Nucl Med. 2003;44:1238–42.

    PubMed  Google Scholar 

  66. Swedish Medical Center. Clinical value of pre-surgery positron emission mammography (PEM) in patients with newly diagnosed breast cancer. In: ClinicalTrials.gov [Internet]. Bethesda: National Library of Medicine (US); 2000. http://clinicaltrials.gov/show/NCT01241721. NLM Identifier: NCT01241721.

  67. The University of Chicago Medical Center. Role of PEM Flex Solo II PET Scanner in evaluating neoadjuvant chemotherapy response in patients with breast cancer. In: ClinicalTrials.gov [Internet]. Bethesda: National Library of Medicine (US); 2000. http://clinicaltrials.gov/show/NCT01012440. NLM Identifier: NCT01012440.

  68. Boston Medical Center. Positron emission mammography and standard mammography in women with dense breast tissue or who are at high risk of breast cancer. In: ClinicalTrials.gov [Internet]. Bethesda: National Library of Medicine (US); 2000. http://clinicaltrials.gov/show/NCT00896649. NLM Identifier: NCT00896649.

  69. Rice SL, Roney CA, Daumar P, Lewis JS. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med. 2011;41:265–82.

    Article  PubMed  Google Scholar 

  70. Vandromme MJ, Umphrey H, Krontiras H. Image-guided methods for biopsy of suspicious breast lesions. J Surg Oncol. 2011;103:299–305.

    Article  PubMed  Google Scholar 

  71. Han BK, Schnall MD, Orel SG, Rosen M. Outcome of MRI-guided breast biopsy. AJR Am J Roentgenol. 2008;191:1798–804.

    Article  PubMed  Google Scholar 

  72. Schell AM, Rosenkranz K, Lewis PJ. Role of breast MRI in the preoperative evaluation of patients with newly diagnosed breast cancer. AJR Am J Roentgenol. 2009;192:1438–44.

    Article  PubMed  Google Scholar 

  73. Raylman RR, Majewski S, Weisenberger AG, Popov V, Wojcik R, Kross B, et al. Positron emission mammography-guided breast biopsy. J Nucl Med. 2001;42:960–6.

    PubMed  CAS  Google Scholar 

  74. Issa N, Poggio ED, Fatica RA, Patel R, Ruggieri PM, Heyka RJ. Nephrogenic systemic fibrosis and its association with gadolinium exposure during MRI. Cleve Clin J Med. 2008;75:95–7. 103–4, 6 passim.

    Article  PubMed  Google Scholar 

  75. Shellock FG, Spinazzi A. MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol. 2008;191:1129–39.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Kalles.

About this article

Cite this article

Kalles, V., Zografos, G.C., Provatopoulou, X. et al. The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer 20, 123–130 (2013). https://doi.org/10.1007/s12282-012-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-012-0433-3

Keywords

Navigation