Skip to main content
Log in

The role of Pax5 in leukemia: diagnosis and prognosis significance

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pax5 transcription factor, also known as B-cell specific activator protein (BSAP), plays a dual role in the hematopoietic system. Pax5 expression is essential in B-cell precursors for normal differentiation and maturation of B-cells. On the other hand, it inhibits the differentiation and progress toward other lineages. The expression of this factor is involved in several aspects of B-cell differentiation, including commitment, immunoglobulin gene rearrangement, BCR signal transduction and B-cell survival, so that the deletion or inactivating mutations of Pax5 cause cell arrest in Pro-B-cell stage. In recent years, point mutations, deletions and various rearrangements in Pax5 gene have been reported in several types of human cancers. However, no clear relationship has been found between these aberrations and disease prognosis. Specific expression of Pax5 in B-cells can raise it as a marker for the diagnosis and differentiation of B-cell leukemias and lymphomas as well as account for remission or relapse. Extensive studies on Pax5 along with other genes and immunomarkers are necessary for decisive results in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou Y, You MJ, Young KH, Lin P, Lu G, Medeiros LJ, et al. Advances in the molecular pathobiology of B-lymphoblastic leukemia. Hum Pathol. 2012;43(9):1347–62.

    Article  CAS  PubMed  Google Scholar 

  2. Hütter G, Kaiser M, Neumann M, Mossner M, Nowak D, Baldus CD, et al. Epigenetic regulation of PAX5 expression in acute T-cell lymphoblastic leukemia. Leuk Res. 2011;35(5):614–9.

    Article  PubMed  Google Scholar 

  3. Nebral K, König M, Harder L, Siebert R, Haas OA, Strehl S. Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol. 2007;139(2):269–74.

    Article  CAS  PubMed  Google Scholar 

  4. Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA. PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol. 2007;73(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  5. Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G, et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood. 2007;109(8):3417–23.

    Article  CAS  PubMed  Google Scholar 

  6. Medvedovic J, Ebert A, Tagoh H, Busslinger M. 5 Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol. 2011;111:179.

    Article  CAS  PubMed  Google Scholar 

  7. Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT, et al. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. Haematologica. 2010:haematol. 2009. 020792.

  8. Souabni A, Jochum W, Busslinger M. Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood. 2007;109(1):281–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kee BL, Murre C. Transcription factor regulation of B lineage commitment. Curr Opin Immunol. 2001;13(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  10. Torlakovic E, Slipicevic A, Robinson C, DeCoteau JF, Alfsen GC, Vyberg M, et al. Pax-5 expression in nonhematopoietic tissues. Am J Clin Pathol. 2006;126(5):798–804.

    Article  CAS  PubMed  Google Scholar 

  11. Usvasalo A, Ninomiya S, Räty R, Hollmén J, Saarinen-Pihkala UM, Elonen E, et al. Focal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analyses. Genes Chromosom Cancer. 2010;49(4):309–18.

    CAS  PubMed  Google Scholar 

  12. Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17(6):781–93.

    Article  CAS  PubMed  Google Scholar 

  13. Revilla‐I‐Domingo R, Bilic I, Vilagos B, Tagoh H, Ebert A, Tamir IM, et al. The B‐cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO J. 2012;31(14):3130–46.

  14. Carotta S, Holmes M, Pridans C, Nutt SL. Pax5 maintains cellular identity by repressing gene expression throughout B cell differentiation. Cell Cycle-landes Biosci. 2006;5(21):2452.

    Article  CAS  Google Scholar 

  15. Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss-and gain-of-function experiments. EMBO J. 1998;17(8):2319–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11(4):476–91.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Lin Z, Kim I. Pax5 expression in non-Hodgkin’s lymphomas and acute leukemias. J Korean Med Sci. 2003;18(6):804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, et al. PAX5 expression in acute leukemias higher B-Lineage specificity than CD79a and selective association with t (8; 21)-acute myelogenous leukemia. Cancer Res. 2004;64(20):7399–404.

    Article  CAS  PubMed  Google Scholar 

  19. Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity. 2007;27(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  20. Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 2004;18(4):411–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gonda H, Sugai M, Nambu Y, Katakai T, Agata Y, Mori KJ, et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J Exp Med. 2003;198(9):1427–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nera K-P, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, et al. Loss of Pax5 promotes plasma cell differentiation. Immunity. 2006;24(3):283–93.

    Article  CAS  PubMed  Google Scholar 

  23. Forero RM, Hernández M, Hernández-Rivas JM. Genetics of acute lymphoblastic leukemia. In: Guenova M, Balatzenko, editors. Leukemia. InTech; 2013. ISBN 978-953-51-1127-6.

  24. Nebral K, Denk D, Attarbaschi A, König M, Mann G, Haas OA, et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia. 2008;23(1):134–43.

    Article  PubMed  Google Scholar 

  25. Mandel EM, Grosschedl R. Transcription control of early B cell differentiation. Curr Opin Immunol. 2010;22(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  26. Strehl S, König M, Dworzak M, Kalwak K, Haas O. PAX5/ETV6 fusion defines cytogenetic entity dic (9; 12)(p13; p13). Leukemia. 2003;17(6):1121–3.

    Article  CAS  PubMed  Google Scholar 

  27. Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene M, Beldjord K, De Vos J, et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia. 2009;23(11):1989–98.

    Article  CAS  PubMed  Google Scholar 

  28. Fazio G, Biondi A, Cazzaniga G. The role of PAX5 in ALL. Nov Asp Acute Lymphoblastic Leuk Tech. 2011.

  29. Kawamata N, Ogawa S, Zimmermann M, Niebuhr B, Stocking C, Sanada M, et al. Cloning of genes involved in chromosomal translocations by high-resolution single nucleotide polymorphism genomic microarray. Proc Natl Acad Sci. 2008;105(33):11921–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7(8):819.

    Article  CAS  PubMed  Google Scholar 

  31. Coyaud E, Struski S, Prade N, Familiades J, Eichner R, Quelen C, et al. Wide diversity of PAX5 alterations in B-ALL: a groupe francophone de cytogenetique hematologique study. Blood. 2010;115(15):3089–97.

    Article  CAS  PubMed  Google Scholar 

  32. Denk D, Bradtke J, König M, Strehl S. PAX5 fusion genes in t (7; 9)(q11. 2; p13) leukemia: a case report and review of the literature. Mol Cytogenet. 2014;7(1):13.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Denk D, Nebral K, Bradtke J, Pass G, Möricke A, Attarbaschi A, et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res. 2012;36(8):e178–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012;26(3):123–35.

  35. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.

    Article  CAS  PubMed  Google Scholar 

  36. An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV, et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc Natl Acad Sci. 2008;105(44):17050–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fortschegger K, Anderl S, Denk D, Strehl S. Functional heterogeneity of PAX5 chimeras reveals insight for leukemia development. Mol Cancer Res. 2014;12(4):595–606.

    Article  CAS  PubMed  Google Scholar 

  38. Mullighan C, Downing J. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009;23(7):1209–18.

    Article  CAS  PubMed  Google Scholar 

  39. Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol Adv Appl. 2013;5(Suppl 1):5.

    Article  CAS  Google Scholar 

  40. Kang H, Roberts KG, Chen I-ML, Atlas SR, Bedrick EJ, Gastier-Foster JM, et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-Precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention. Blood. 2013;122(21):826.

    Google Scholar 

  41. Harder L, Eschenburg G, Zech A, Kriebitzsch N, Otto B, Streichert T, et al. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia. J Exp Med. 2013;210(11):2289–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sarhadi VK, Lahti L, Scheinin I, Ellonen P, Kettunen E, Serra M, et al. Copy number alterations and neoplasia-specific mutations in MELK, PDCD1LG2, TLN1, and PAX5 at 9p in different neoplasias. Genes Chromosom Cancer. 2014;53(7):579–88.

    Article  CAS  PubMed  Google Scholar 

  43. Carotta S, Nutt SL. Losing B cell identity. BioEssays. 2008;30(3):203–7.

    Article  PubMed  Google Scholar 

  44. Sigvardsson M. Transcription factor dose links development to disease. Blood. 2012;120(18):3630–1.

    Article  CAS  PubMed  Google Scholar 

  45. Nasr MR, Rosenthal N, Syrbu S. Expression profiling of transcription factors in B-or T-Acute lymphoblastic leukemia/lymphoma and burkitt lymphoma usefulness of PAX5 immunostaining as Pan–Pre-B-Cell marker. Am J Clin Pathol. 2010;133(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hutspardol S, Pakakasama S, Kanta K, Nuntakarn L, Anurathapan U, Sirachainan N, et al. Interphase-FISH screening for eight common rearrangements in pediatric B-cell precursor acute lymphoblastic leukemia. Int J Lab Hematol. 2013;35(4):406–15.

    Article  CAS  PubMed  Google Scholar 

  47. Desouki MM, Post GR, Cherry D, Lazarchick J. PAX-5: a valuable immunohistochemical marker in the differential diagnosis of lymphoid neoplasms. Clin Med Res. 2010;8(2):84–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Heltemes-Harris LM, Willette MJ, Ramsey LB, Qiu YH, Neeley ES, Zhang N, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J Exp Med. 2011;208(6):1135–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bernt KM, Hunger SP. Current concepts in pediatric philadelphia chromosome-positive acute lymphoblastic leukemia. Fron Oncol. 2014.

  50. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Slamova L, Starkova J, Fronkova E, Zaliova M, Reznickova L, van Delft FW, et al. CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia. 2014;28(3):609–20.

  52. Lundin C, Hjorth L, Behrendtz M, Nordgren A, Palmqvist L, Andersen MK, et al. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with Down syndrome. Genes Chromosom Cancer. 2012;51(2):196–206.

    Article  CAS  PubMed  Google Scholar 

  53. Kearney L, De Castro DG, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang H. The molecular mechanisms for maintenance of cancer stem cells in chronic myeloid leukemia: a dissertation. 2012.

  55. Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen Y, et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet. 2012;44(8):861–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ray D, Kwon SY, Ptasinska A, Bonifer C. Chronic growth factor receptor signaling and lineage inappropriate gene expression in AML: the polycomb connection. Cell Cycle. 2013;12(14):2159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Sadakane Y, Zaitsu M, Nishi M, Sugita K, Mizutani S, Matsuzaki A, et al. Expression and production of aberrant PAX5 with deletion of exon 8 in B-lineage acute lymphoblastic leukaemia of children. Br J Haematol. 2007;136(2):297–300.

    Article  CAS  PubMed  Google Scholar 

  58. Ray D, Kwon SY, Tagoh H, Heidenreich O, Ptasinska A, Bonifer C. Lineage-inappropriate PAX5 expression in t (8; 21) acute myeloid leukemia requires signaling-mediated abrogation of polycomb repression. Blood. 2013;122(5):759–69.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng J, Dong S, Wang Q, Pan J, Chen S, Qiu H. Deletions and rearrangements of PAX5 gene in B-lineage acute lymphoblastic leukemia. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chin J Med Genet. 2013;30(5):549.

    CAS  Google Scholar 

  60. Zakaria Z, Ahid MFM, Ismail A, Keoh TS, Nor NM, Kamaluddin NR, et al. Chromosomal aberrations in ETV6/RUNX1-positive childhood acute lymphoblastic leukemia using 244 K Oligonucleotide array comparative genomic hybridization. Mol Cytogenet. 2012;5(1):41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti R, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6.

    Article  CAS  PubMed  Google Scholar 

  62. McCune RC, Syrbu SI, Vasef MA. Expression profiling of transcription factors Pax-5, Oct-1, Oct-2, BOB. 1, and PU. 1 in Hodgkin’s and non-Hodgkin’s lymphomas: a comparative study using high throughput tissue microarrays. Mod Pathol. 2006;19.

  63. García-Cosío M, Santón A, Martín P, Camarasa N, Montalbán C, García JF, et al. Analysis of transcription factor OCT. 1, OCT. 2 and BOB. 1 expression using tissue arrays in classical Hodgkin’s lymphoma. Mod Pathol. 2004;17(12):1531–8.

    Article  PubMed  Google Scholar 

  64. Theil J, Laumen H, Marafioti T, Hummel M, Lenz G, Wirth T, et al. Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed–Sternberg cells. Blood. 2001;97(10):3191–6.

    Article  CAS  PubMed  Google Scholar 

  65. Saki N, Abroun S, Hajizamani S, Rahim F, Shahjahani M. Association of chromosomal translocation and miRNA expression with the pathogenesis of multiple myeloma. Cell J. 2014;16(2):99–110.

  66. Zheng X, Abroun S, Otsuyama K-i, Asaoku H, Kawano MM. Heterogeneous expression of CD32 and CD32-mediated growth suppression in human myeloma cells. Haematologica. 2006;91(7):920–8.

    CAS  PubMed  Google Scholar 

  67. Borson ND, Lacy MQ, Wettstein PJ. Altered mRNA expression of Pax5 and Blimp-1 in B cells in multiple myeloma. Blood. 2002;100(13):4629–39.

    Article  CAS  PubMed  Google Scholar 

  68. Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2008;26:133–69.

    Article  CAS  PubMed  Google Scholar 

  69. Torlakovic E, Torlakovic G, Nguyen PL, Brunning RD, Delabie J. The value of anti-pax-5 immunostaining in routinely fixed and paraffin-embedded sections: a novel pan pre-B and B-cell marker. Am J Surg Pathol. 2002;26(10):1343–50.

    Article  PubMed  Google Scholar 

  70. Morgenstern DA, Hasan F, Gibson S, Winyard P, Sebire NJ, Anderson J. PAX5 Expression in nonhematopoietic tissues reappraisal of previous studies. Am J Clin Pathol. 2010;133(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  71. O’Brien P, Morin P, Ouellette RJ, Robichaud GA. The Pax-5 gene: a pluripotent regulator of B-cell differentiation and cancer disease. Cancer Res. 2011;71(24):7345–50.

    Article  PubMed  Google Scholar 

  72. Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61(12):4666–70.

    CAS  PubMed  Google Scholar 

  73. Chisté M, Vrotsos E, Zamora C, Martinez A. Chronic lymphocytic leukemia/small lymphocytic lymphoma involving the aortic valve. Ann Diagn Pathol. 2013;17(3):295–7.

    Article  PubMed  Google Scholar 

  74. Bharti B, Mishra R. Isoforms of Pax5 and co-regulation of T-and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton’s lymphoma. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2011;1813(12):2071–8.

    Article  CAS  Google Scholar 

  75. Kim M, Choi JE, She CJ, Hwang SM, Shin HY, Ahn HS, et al. PAX5 deletion is common and concurrently occurs with CDKN2A deletion in B-lineage acute lymphoblastic leukemia. Blood Cells Mol Dis. 2011;47(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  76. Russell LJ, Akasaka T, Majid A, Sugimoto K-j, Karran EL, Nagel I, et al. t (6; 14)(p22; q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2008;111(1):387–391.

Download references

Acknowledgments

We wish to thank all our colleagues in Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahjahani, M., Norozi, F., Ahmadzadeh, A. et al. The role of Pax5 in leukemia: diagnosis and prognosis significance. Med Oncol 32, 360 (2015). https://doi.org/10.1007/s12032-014-0360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0360-6

Keywords

Navigation