Skip to main content

Advertisement

Log in

Molecular Analysis of Thyroid Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Thyroid cancer is the most common endocrine malignancy, and its incidence is rising in the USA and other countries. Papillary and follicular thyroid carcinomas are the two most common types of thyroid cancer. Non-overlapping genetic alterations, including BRAF and RAS point mutations, and RET/PTC and PAX8/PPARγ rearrangements, are found in more than 70% of papillary and follicular thyroid carcinomas. These represent the most common genetic alterations in thyroid cancer, as well as molecular markers of diagnostic and prognostic significance. The use of these and other emerging molecular markers will likely improve the diagnosis of malignancy in thyroid nodules as well as facilitate more individualized operative and postoperative management. Herein, we provide a brief overview of the common genetic alterations in papillary and follicular thyroid carcinoma and discuss the diagnostic and prognostic significance thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC, 2004.

  2. Nikiforov YE. Thyroid tumors: Classification and general considerations. In: Nikiforov YE, Biddinger PW, Thompson LDR, eds. Diagnostic pathology and molecular genetcis of the thyroid. Baltimore: Lippincott Williams & Wilkins, 2009; 94–102.

    Google Scholar 

  3. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7): 1454–1457, 2003.

    PubMed  CAS  Google Scholar 

  4. Soares P, Trovisco V, Rocha AS et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22(29): 4578–4580, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Frattini M, Ferrario C, Bressan P et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23(44): 7436–7440, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Adeniran AJ, Zhu Z, Gandhi M et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 30(2): 216–222, 2006.

    Article  PubMed  Google Scholar 

  7. Nikiforova MN, Lynch RA, Biddinger PW et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5): 2318–2326, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Rostan G, Costa AM, Pereira-Castro I et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 65(22): 10199–10207, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4): 292–306, 2006.

    Article  PubMed  CAS  Google Scholar 

  10. Hou P, Liu D, Shan Y et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 13(4): 1161–1170, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Ricarte-Filho JC, Ryder M, Chitale DA et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69(11): 4885–4893, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen Y, Xing M, Mambo E et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 95(8): 625–627, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Ciampi R, Nikiforov YE. Alterations of the BRAF gene in thyroid tumors. Endocr Pathol. 16(3): 163–172, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 12(2): 245–262, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6): 855–867, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65(10): 4238–4245, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Namba H, Nakashima M, Hayashi T et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88(9): 4393–4397, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11): 5399–5404, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 17(11): 1359–1363, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Trovisco V, Vieira de Castro I, Soares P et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 202(2): 247–251, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Carta C, Moretti S, Passeri L et al. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin Endocrinol (Oxf). 64(1): 105–109, 2006.

    Article  CAS  Google Scholar 

  22. Chiosea S, Nikiforova M, Zuo H et al. A Novel Complex BRAF Mutation Detected in a Solid Variant of Papillary Thyroid Carcinoma. Endocr Pathol. 20(2): 122–126, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Basolo F, Torregrossa L, Giannini R et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 95(9): 4197–4205, 2010.

    Article  PubMed  CAS  Google Scholar 

  24. Ciampi R, Knauf JA, Kerler R et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 115(1): 94–101, 2005.

    PubMed  CAS  Google Scholar 

  25. Fusco A, Grieco M, Santoro M et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328(6126): 170–172, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Grieco M, Santoro M, Berlingieri MT et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60(4): 557–563, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Jhiang SM, Sagartz JE, Tong Q et al. Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137(1): 375–378, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Santoro M, Chiappetta G, Cerrato A et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12(8): 1821–1826, 1996.

    PubMed  CAS  Google Scholar 

  29. Powell DJ, Jr., Russell J, Nibu K et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res 58(23): 5523–5528, 1998.

    PubMed  CAS  Google Scholar 

  30. Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 4(1): 223–228, 1998.

    PubMed  CAS  Google Scholar 

  31. Tallini G, Santoro M, Helie M et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4(2): 287–294, 1998.

    PubMed  CAS  Google Scholar 

  32. Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8(6): 345–354, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Nikiforov YE. RET/PTC Rearrangement in Thyroid Tumors. Endocr Pathol 13(1): 3–16, 2002.

    Article  PubMed  CAS  Google Scholar 

  34. Nikiforov YE. RET/PTC Rearrangement--a link between Hashimoto’s thyroiditis and thyroid cancer…or not. J Clin Endocrinol Metab 91(6): 2040–2042, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91(9): 3603–3610, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57(9): 1690–1694, 1997.

    PubMed  CAS  Google Scholar 

  37. Soares P, Fonseca E, Wynford-Thomas D, Sobrinho-Simoes M. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol 185(1): 71–78, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Rabes HM, Demidchik EP, Sidorow JD et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6(3): 1093–1103, 2000.

    PubMed  CAS  Google Scholar 

  39. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The RET/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85(3): 1170–1175, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. Viglietto G, Chiappetta G, Martinez-Tello FJ et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11(6): 1207–1210, 1995.

    PubMed  CAS  Google Scholar 

  41. Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 83(11): 4116–4122, 1998.

    Article  PubMed  CAS  Google Scholar 

  42. Lemoine NR, Mayall ES, Wyllie FS et al. Activated RAS oncogenes in human thyroid cancers. Cancer Res 48(16): 4459–4463, 1988.

    PubMed  CAS  Google Scholar 

  43. Lemoine NR, Mayall ES, Wyllie FS et al. High frequency of RAS oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4(2): 159–164, 1989.

    PubMed  CAS  Google Scholar 

  44. Suarez HG, du Villard JA, Severino M et al. Presence of mutations in all three RAS genes in human thyroid tumors. Oncogene 5(4): 565–570, 1990.

    PubMed  CAS  Google Scholar 

  45. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of RAS mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50(4): 529–535, 1999.

    Article  CAS  Google Scholar 

  46. Basolo F, Pisaturo F, Pollina LE et al. N-RAS mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10(1): 19–23, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R. Role of RAS mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract 196(1): 1–7, 2000.

    PubMed  CAS  Google Scholar 

  48. Namba H, Rubin SA, Fagin JA. Point mutations of RAS oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4(10): 1474–1479, 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Schark C, Fulton N, Jacoby RF, Westbrook CA, Straus FH, 2nd, Kaplan EL. N-RAS 61 oncogene mutations in Hurthle cell tumors. Surgery 108(6): 994–999, discussion 999–1000, 1990.

    PubMed  CAS  Google Scholar 

  50. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 79(5): 547–555, 1999.

    PubMed  CAS  Google Scholar 

  51. Karga H, Lee JK, Vickery AL, Jr., Thor A, Gaz RD, Jameson JL. RAS oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 73(4): 832–836, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-RAS mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 116(6): 1010–1016, 1994.

    PubMed  CAS  Google Scholar 

  53. Ezzat S, Zheng L, Kolenda J, Safarian A, Freeman JL, Asa SL. Prevalence of activating RAS mutations in morphologically characterized thyroid nodules. Thyroid 6(5): 409–416, 1996.

    Article  PubMed  CAS  Google Scholar 

  54. Vasko VV, Gaudart J, Allasia C et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol 151(6): 779–786, 2004.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of RAS mutations. Am J Clin Pathol 120(1): 71–77, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Kroll TG, Sarraf P, Pecciarini L et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483): 1357–1360, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Dwight T, Thoppe SR, Foukakis T et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88(9): 4440–4445, 2003.

    Article  PubMed  CAS  Google Scholar 

  58. French CA, Alexander EK, Cibas ES et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol 162(4): 1053–1060, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26(8): 1016–1023, 2002.

    Article  PubMed  Google Scholar 

  60. Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87(8): 3947–3952, 2002.

    Article  PubMed  CAS  Google Scholar 

  61. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid 19(12): 1351–1361, 2009.

    Article  PubMed  CAS  Google Scholar 

  62. Cohen Y, Rosenbaum E, Clark DP et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 10(8): 2761–2765, 2004.

    Article  PubMed  CAS  Google Scholar 

  63. Salvatore G, Giannini R, Faviana P et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89(10): 5175–5180, 2004.

    Article  PubMed  CAS  Google Scholar 

  64. Pizzolanti G, Russo L, Richiusa P et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid 17(11): 1109–1115, 2007.

    Article  PubMed  CAS  Google Scholar 

  65. Kim SK, Kim DL, Han HS et al. Pyrosequencing analysis for detection of a BRAFV600E mutation in an FNAB specimen of thyroid nodules. Diagn Mol Pathol 17(2): 118–125, 2008.

    Article  PubMed  CAS  Google Scholar 

  66. Jo YS, Huang S, Kim YJ et al. Diagnostic value of pyrosequencing for the BRAF V600E mutation in ultRASound-guided fine-needle aspiration biopsy samples of thyroid incidentalomas. Clin Endocrinol (Oxf) 70(1): 139–144, 2009.

    Article  CAS  Google Scholar 

  67. Nikiforov YE, Steward DL, Robinson-Smith TM et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94(6): 2092–2098, 2009.

    Article  PubMed  CAS  Google Scholar 

  68. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of RET/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab. 86(5): 2187–2190, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Nikiforov Y, Steward DL, Nikiforova MN et al. Role of molecular testing for mutations improving the fine needle aspiration (FNA) diagnosis of thyroid nodules: 77th Annual Meeting of the American Thyroid Association, 2006.

  70. Cantara S, Capezzone M, Marchisotta S et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 95(3): 1365–1369, 2010.

    Article  PubMed  CAS  Google Scholar 

  71. Saavedra HI, Knauf JA, Shirokawa JM et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19(34): 3948–3954, 2000.

    Article  PubMed  CAS  Google Scholar 

  72. Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol 16(5): 903–911, 2002.

    Article  PubMed  CAS  Google Scholar 

  73. Garcia-Rostan G, Zhao H, Camp RL et al. RAS mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21(17): 3226–3235, 2003.

    Article  PubMed  CAS  Google Scholar 

  74. Ohori NP, Nikiforova MN, Schoedel KE et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol 118(1): 17–23, 2010.

    Article  PubMed  CAS  Google Scholar 

  75. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28(7): 742–762, 2007.

    Article  PubMed  CAS  Google Scholar 

  76. Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90(12): 6373–6379, 2005.

    Article  PubMed  CAS  Google Scholar 

  77. Kim TY, Kim WB, Rhee YS et al. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf) 65(3):364–368, 2006.

    Article  CAS  Google Scholar 

  78. Kebebew E, Weng J, Bauer J et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246(3): 466–470, discussion 470–461, 2007.

    Article  PubMed  Google Scholar 

  79. O’Neill CJ, Bullock M, Chou A et al. BRAF(V600E) mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patients with papillary thyroid cancer. Surgery 148(6): 1139–45, discussion 1145–6, 2010.

    Article  PubMed  Google Scholar 

  80. Elisei R, Ugolini C, Viola D et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93(10): 3943–3949, 2008.

    Article  PubMed  CAS  Google Scholar 

  81. Howell GM, Carty SE, Armstrong MJ et al. Both BRAF V600E mutation and older age (≥65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol, 2011 (in press).

  82. Yip L, Nikiforova MN, Carty SE et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery 146(6): 1215–1223, 2009.

    Article  PubMed  Google Scholar 

  83. Xing M, Clark D, Guan H, et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Endocrinol Metab 93(10): 3943–3949, 2009.

    Google Scholar 

  84. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321(1): 86–93, 2010.

    Article  PubMed  CAS  Google Scholar 

  85. Lupi C, Giannini R, Ugolini C et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92(11): 4085–4090, 2007.

    Article  PubMed  CAS  Google Scholar 

  86. Rodolico V, Cabibi D, Pizzolanti G et al. BRAF V600E mutation and p27 kip1 expression in papillary carcinomas of the thyroid < or = 1 cm and their paired lymph node metastases. Cancer 110(6): 1218–1226, 2007.

    Article  PubMed  Google Scholar 

  87. Lee X, Gao M, Ji Y et al. Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol 16(2): 240–245, 2009.

    Article  PubMed  Google Scholar 

  88. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ, 3 rd, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 21(9): 1139–1146, 2008.

    Article  PubMed  CAS  Google Scholar 

  89. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer 13(1): 257–269, 2006.

    Article  PubMed  CAS  Google Scholar 

  90. Durante C, Puxeddu E, Ferretti E et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 92(7): 2840–2843, 2007.

    Article  PubMed  CAS  Google Scholar 

  91. Saad A, Falciglia M, Steward DL, Nikiforov YE. Amiodarone-induced thyrotoxicosis and thyroid cancer: clinical, immunohistochemical, and molecular genetic studies of a case and review of the literature. Arch Pathol Lab Med 128(7): 807–810, 2004.

    PubMed  Google Scholar 

  92. Mayr B, Brabant G, Goretzki P, Ruschoff J, Dietmaier W, Dralle H. RET/PTC-1, -2, and −3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 82(4): 1306–1307, 1997.

    Article  PubMed  CAS  Google Scholar 

  93. Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB, Asa SL. Oncogene profile of papillary thyroid carcinoma. Surgery 125(1): 46–52, 1999.

    Article  PubMed  CAS  Google Scholar 

  94. Mochizuki K, Kondo T, Nakazawa T et al. RET rearrangements and BRAF mutation in undifferentiated thyroid carcinomas having papillary carcinoma components. Histopathology 57(3): 444–450, 2010.

    Article  PubMed  Google Scholar 

  95. Manenti G, Pilotti S, Re FC, Della Porta G, Pierotti MA. Selective activation of RAS oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer 30A(7): 987–993, 1994.

    Article  PubMed  CAS  Google Scholar 

  96. Liu J, Singh B, Tallini G et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 107(6): 1255–1264, 2006.

    Article  PubMed  Google Scholar 

  97. Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF, Klempnauer J. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 128(6): 984–993, 2000.

    Article  PubMed  CAS  Google Scholar 

  98. Wajjwalku W, Nakamura S, Hasegawa Y et al. Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83(7): 671–675, 1992.

    PubMed  CAS  Google Scholar 

  99. Delvincourt C, Patey M, Flament JB et al. Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagne-Ardenne region. Clin Biochem 29(3): 267–271, 1996.

    Article  PubMed  CAS  Google Scholar 

  100. Huang Y, PRASad M, Lemon WJ et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98(26): 15044–15049, 2001.

    Article  PubMed  CAS  Google Scholar 

  101. Chevillard S, Ugolin N, Vielh P et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 10(19): 6586–6597, 2004.

    Article  PubMed  CAS  Google Scholar 

  102. Giordano TJ, Kuick R, Thomas DG et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24(44): 6646–6656, 2005.

    Article  PubMed  CAS  Google Scholar 

  103. Chudova D, Wilde JI, Wang ET et al. Molecular Classification of Thyroid Nodules Using High-Dimensionality Genomic Data. J Clin Endocrinol Metab 95(12): 5296–304, 2010.

    Article  PubMed  CAS  Google Scholar 

  104. Cooper DS, Doherty GM, Haugen BR et al. Revised management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214, 2009.

    Article  PubMed  Google Scholar 

  105. McCoy KL et al. Frozen section in the era of molecular testing for differentiated thyroid cancer, 2011 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Nikiforov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaijee, F., Nikiforov, Y.E. Molecular Analysis of Thyroid Tumors. Endocr Pathol 22, 126–133 (2011). https://doi.org/10.1007/s12022-011-9170-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-011-9170-y

Keywords

Navigation