Skip to main content

Advertisement

Log in

Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Surgery for pituitary adenomas still remains a mainstay in their treatment, despite all advances in sophisticated medical treatments and radiotherapy. Total tumor excision is often attempted, but there are limitations in the intraoperative assessment of the radicalism of tumor resection by the neurosurgeon. Standard postoperative imaging is usually performed with a few months delay from the surgical intervention. The purpose of this report is to review briefly the facilities and kinds of intraoperative magnetic resonance imaging for all physician and surgeons involved in the management of pituitary adenomas on the basis of current literature. To date, there are several low- and high-field magnetic resonance imaging systems available for intraoperative use and depiction of the extent of tumor removal during surgery. Recovery of vision and the morphological result of surgery can be largely predicted from the intraoperative images. A variety of studies document that depiction of residual tumor allows targeted attack of the remnant and extent the resection. Intraoperative magnetic resonance imaging offers an immediate feedback to the surgeon and is a perfect quality control for pituitary surgery. It is also used as a basis of datasets for intraoperative navigation which is particularly useful in any kind of anatomical variations and repeat operations in which primary surgery has distorted the normal anatomy. However, setting up the technology is expensive and some systems even require extensive remodeling of the operation theatre. Intraoperative imaging prolongs the operation, but may also depict evolving problems, such as hematomas in the tumor cavity. There are several artifacts in intraoperative MR images possible that must be considered. The procedures are not associated with an increased complication rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.J. Bohinski, R.E. Warnick, M.F. Gaskill-Shipley, M. Zuccarello, H.R. van Loveren, D.W. Kormos, J.M. Tew Jr, Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49(5), 1133–1143 (2001); discussion 1134–1143

    PubMed  CAS  Google Scholar 

  2. M. Buchfelder, Treatment of pituitary tumors: surgery. Endocrine 28(1), 67–75 (2005). doi:10.1385/ENDO:28:1:067

    Article  PubMed  CAS  Google Scholar 

  3. M. Buchfelder, S. Schlaffer, Surgical treatment of pituitary tumours. Best practice & research. Clin. Endocrinol. Metab. 23(5), 677–692 (2009). doi:10.1016/j.beem.2009.05.002

    Google Scholar 

  4. J. Hardy, S.M. Wigser, Trans-sphenoidal surgery of pituitary fossa tumors with televised radiofluoroscopic control. J. Neurosurg. 23(6), 612–619 (1965). doi:10.3171/jns.1965.23.6.0612

    Article  PubMed  CAS  Google Scholar 

  5. R. Nesbakken, S. Reinlie, O.P. Eldevik, Intraoperative gas cisternography and gas dissection in the operative treatment of pituitary tumors. A methodological description. Eur. Surg. Res. 16(Suppl 2), 73–79 (1984)

    Article  PubMed  Google Scholar 

  6. N.F. Maartens, The history of the treatment of pituitary adenomas. Endocrine 28(1), 9–26 (2005). doi:10.1385/ENDO:28:1:009

    Article  PubMed  CAS  Google Scholar 

  7. H. Okudera, T. Takemae, S. Kobayashi, Intraoperative computed tomographic scanning during transsphenoidal surgery: technical note. Neurosurgery 32(6), 1041–1043 (1993)

    Article  PubMed  CAS  Google Scholar 

  8. K. Arita, K. Kurisu, A. Tominaga, H. Kawamoto, K. Iida, T. Mizoue, B. Pant, T. Uozumi, Trans-sellar color Doppler ultrasonography during transsphenoidal surgery. Neurosurgery 42(1), 81–85 (1998); discussion 86

    Article  PubMed  CAS  Google Scholar 

  9. J.L. Atkinson, J.L. Kasperbauer, E.M. James, J.I. Lane, T.B. Nippoldt, Transcranial-transdural real-time ultrasonography during transsphenoidal resection of a large pituitary tumor. Case report. J. Neurosurg. 93(1), 129–131 (2000). doi:10.3171/jns.2000.93.1.0129

    Article  PubMed  CAS  Google Scholar 

  10. J.L. Doppman, Z. Ram, T.H. Shawker, E.H. Oldfield, Intraoperative US of the pituitary gland. Work in progress. Radiology 192(1), 111–115 (1994)

    PubMed  CAS  Google Scholar 

  11. W.J. Elias, J.B. Chadduck, T.D. Alden, E.R. Laws Jr, Frameless stereotaxy for transsphenoidal surgery. Neurosurgery 45(2), 271–275 (1999); discussion 275–277

    Article  PubMed  CAS  Google Scholar 

  12. J.A. Jane Jr, K. Thapar, T.D. Alden, E.R. Laws Jr, Fluoroscopic frameless stereotaxy for transsphenoidal surgery. Neurosurgery 48(6), 1302–1307 (2001); discussion 1307–1308

    PubMed  Google Scholar 

  13. A. Kacker, A. Komisar, J. Huo, J. Mangiardi, Transsphenoidal surgery utilizing computer-assisted stereotactic guidance. Rhinology 39(4), 207–210 (2001)

    PubMed  CAS  Google Scholar 

  14. G. Lasio, P. Ferroli, G. Felisati, G. Broggi, Image-guided endoscopic transnasal removal of recurrent pituitary adenomas. Neurosurgery 51(1), 132–136 (2002); discussion 136–137

    Article  PubMed  Google Scholar 

  15. U.W. Thomale, J.F. Stover, A.W. Unterberg, The use of neuronavigation in transnasal transsphenoidal pituitary surgery. Zentralbl. Neurochir. 66(3), 126–132 (2005). doi:10.1055/s-2005-836602; discussion 132

    Article  PubMed  Google Scholar 

  16. D.G. Walker, C. Ohaegbulam, P.M. Black, Frameless stereotaxy as an alternative to fluoroscopy for transsphenoidal surgery: use of the InstaTrak-3000 and a novel headset. J. Clin. Neurosci. 9(3), 294–297 (2002)

    Article  PubMed  Google Scholar 

  17. M. Buchfelder, S.M. Schlaffer, Modern imaging of pituitary adenomas. Frontier Horm. Res. 38, 109–120 (2010). doi:10.1159/000318500

    Article  Google Scholar 

  18. P.M. Black, T. Moriarty, E. Alexander III, P. Stieg, E.J. Woodard, P.L. Gleason, C.H. Martin, R. Kikinis, R.B. Schwartz, F.A. Jolesz, Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4), 831–842 (1997); discussion 842–835

    Article  PubMed  CAS  Google Scholar 

  19. R.S. Pergolizzi Jr, A. Nabavi, R.B. Schwartz, L. Hsu, T.Z. Wong, C. Martin, P.M. Black, F.A. Jolesz, Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J. Magn. Reson. Imaging 13(1), 136–141 (2001)

    Article  PubMed  Google Scholar 

  20. R.B. Schwartz, L. Hsu, T.Z. Wong, D.F. Kacher, A.A. Zamani, P.M. Black, E. Alexander III, P.E. Stieg, T.M. Moriarty, C.A. Martin, R. Kikinis, F.A. Jolesz, Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211(2), 477–488 (1999)

    PubMed  CAS  Google Scholar 

  21. C. Nimsky, O. Ganslandt, R. Fahlbusch, Comparing 0.2 tesla with 1.5 tesla intraoperative magnetic resonance imaging analysis of setup, workflow, and efficiency. Acad. Radiol. 12(9), 1065–1079 (2005). doi:10.1016/j.acra.2005.05.020

    Article  PubMed  Google Scholar 

  22. C. Nimsky, O. Ganslandt, B. Von Keller, J. Romstock, R. Fahlbusch, Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1), 67–78 (2004). doi:10.1148/radiol.2331031352

    Article  PubMed  Google Scholar 

  23. R. Steinmeier, R. Fahlbusch, O. Ganslandt, C. Nimsky, M. Buchfelder, M. Kaus, T. Heigl, G. Lenz, R. Kuth, W. Huk, Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43(4), 739–747 (1998); discussion 747–738

    Article  PubMed  CAS  Google Scholar 

  24. V. Benes, D. Netuka, F. Kramar, S. Ostry, T. Belsan, Multifunctional surgical suite (MFSS) with 3.0 T iMRI: 17 months of experience. Acta Neurochir. Suppl. 109, 145–149 (2011). doi:10.1007/978-3-211-99651-5_22

    Article  PubMed  Google Scholar 

  25. A. Jankovski, F. Francotte, G. Vaz, E. Fomekong, T. Duprez, M. Van Boven, M.A. Docquier, L. Hermoye, G. Cosnard, C. Raftopoulos, Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience. Neurosurgery 63(3), 412–424 (2008). doi:10.1227/01.NEU.0000324897.59311.1C; discussion 416–424

    Article  PubMed  Google Scholar 

  26. M.J. Lang, J.J. Kelly, G.R. Sutherland, A moveable 3-T intraoperative magnetic resonance imaging system. Neurosurgery 68(1 Suppl Operative), 168–179 (2011). doi:10.1227/NEU.0b013e3182045803

    PubMed  Google Scholar 

  27. M.N. Pamir, 3 T ioMRI: the Istanbul experience. Acta Neurochir. Suppl. 109, 131–137 (2011). doi:10.1007/978-3-211-99651-5_20

    Article  PubMed  Google Scholar 

  28. R. Fahlbusch, B. Keller, O. Ganslandt, J. Kreutzer, C. Nimsky, Transsphenoidal surgery in acromegaly investigated by intraoperative high-field magnetic resonance imaging. Eur. J. Endocrinol. 153(2), 239–248 (2005). doi:10.1530/eje.1.01970

    Article  PubMed  CAS  Google Scholar 

  29. C. Nimsky, B. von Keller, O. Ganslandt, R. Fahlbusch, Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 59(1), 105–114 (2006). doi:10.1227/01.NEU.0000219198.38423.1E; discussion 105–114

    Article  PubMed  Google Scholar 

  30. R. Fahlbusch, O. Ganslandt, M. Buchfelder, W. Schott, C. Nimsky, Intraoperative magnetic resonance imaging during transsphenoidal surgery. J. Neurosurg. 95(3), 381–390 (2001). doi:10.3171/jns.2001.95.3.0381

    Article  PubMed  CAS  Google Scholar 

  31. C. Nimsky, O. Ganslandt, B. Hofmann, R. Fahlbusch, Limited benefit of intraoperative low-field magnetic resonance imaging in craniopharyngioma surgery. Neurosurgery 53(1), 72–80 (2003); discussion 71–80

    Article  PubMed  Google Scholar 

  32. T.S. Dina, S.H. Feaster, E.R. Laws Jr, D.O. Davis, MR of the pituitary gland postsurgery: serial MR studies following transsphenoidal resection. AJNR Am. J. Neuroradiol. 14(3), 763–769 (1993)

    PubMed  CAS  Google Scholar 

  33. M.M. Teng, C.I. Huang, T. Chang, The pituitary mass after transsphenoidal hypophysectomy. AJNR Am. J. Neuroradiol. 9(1), 23–26 (1988)

    PubMed  CAS  Google Scholar 

  34. T. Kilic, G. Ekinci, A. Seker, I. Elmaci, C. Erzen, M.N. Pamir, Determining optimal MRI follow-up after transsphenoidal surgery for pituitary adenoma: scan at 24 hours postsurgery provides reliable information. Acta Neurochir. 143(11), 1103–1126 (2001). doi:10.1007/s007010100002

    Article  CAS  Google Scholar 

  35. E.J. Zirkzee, E.P. Corssmit, N.R. Biermasz, P.A. Brouwer, F.T. Wiggers-De Bruine, L.J. Kroft, M.A. Van Buchem, F. Roelfsema, A.M. Pereira, J.W. Smit, J.A. Romijn, Pituitary magnetic resonance imaging is not required in the postoperative follow-up of acromegalic patients with long-term biochemical cure after transsphenoidal surgery. J. Clin. Endocrinol. Metab. 89(9), 4320–4324 (2004). doi:10.1210/jc.2003-032141

    Article  PubMed  CAS  Google Scholar 

  36. V. Rajaraman, M. Schulder, Postoperative MRI appearance after transsphenoidal pituitary tumor resection. Surg. Neurol. 52(6), 592–598 (1999); discussion 598–599

    Article  PubMed  CAS  Google Scholar 

  37. O. Rodriguez, B. Mateos, R. de la Pedraja, R. Villoria, J.I. Hernando, A. Pastor, I. Pomposo, J. Aurrecoechea, Postoperative follow-up of pituitary adenomas after trans-sphenoidal resection: MRI and clinical correlation. Neuroradiology 38(8), 747–754 (1996)

    Article  PubMed  CAS  Google Scholar 

  38. A. Giustina, P. Chanson, M.D. Bronstein, A. Klibanski, S. Lamberts, F.F. Casanueva, P. Trainer, E. Ghigo, K. Ho, S. Melmed, Acromegaly consensus, G.: a consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95(7), 3141–3148 (2010). doi:10.1210/jc.2009-2670

    Article  PubMed  CAS  Google Scholar 

  39. A. Giustina, G. Mazziotti, V. Torri, M. Spinello, I. Floriani, S. Melmed, Meta-analysis on the effects of octreotide on tumor mass in acromegaly. PLoS One 7(5), e36411 (2012). doi:10.1371/journal.pone.0036411

    Article  PubMed  CAS  Google Scholar 

  40. S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg, D. Clemmons, P. Chanson, E. Laws, J. Schlechte, M.L. Vance, K. Ho, A. Giustina, Acromegaly consensus, G.: Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94(5), 1509–1517 (2009). doi:10.1210/jc.2008-2421

    Article  PubMed  CAS  Google Scholar 

  41. D.G. Walker, P.M. Black, Use of intraoperative MRI in pituitary surgery. Oper. Tech. Neurosurg. 5(4), 231–238 (2002). doi:10.1053/otns.2002.32496

    Article  Google Scholar 

  42. M. Bernstein, A.R. Al-Anazi, W. Kucharczyk, P. Manninen, M. Bronskill, M. Henkelman, Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects. Neurosurgery 46(4), 900–907 (2000); discussion 907–909

    PubMed  CAS  Google Scholar 

  43. C.R. Wirtz, M. Knauth, A. Staubert, M.M. Bonsanto, K. Sartor, S. Kunze, V.M. Tronnier, Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46(5), 1112–1120 (2000); discussion 1120–1112

    Article  PubMed  CAS  Google Scholar 

  44. J.S. Lewin, S.G. Nour, M.L. Meyers, A.K. Metzger, R.J. Maciunas, M. Wendt, J.L. Duerk, A. Oppelt, W.R. Selman, Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am. J. Roentgenol. 189(5), 1096–1103 (2007). doi:10.2214/AJR.06.1247

    Article  PubMed  Google Scholar 

  45. B.J. Darakchiev, J.M. Tew Jr, R.J. Bohinski, R.E. Warnick, Adaptation of a standard low-field (0.3-T) system to the operating room: focus on pituitary adenomas. Neurosurg. Clin. N. Am. 16(1), 155–164 (2005). doi:10.1016/j.nec.2004.07.003

    Article  PubMed  Google Scholar 

  46. J.Y. Ahn, J.Y. Jung, J. Kim, K.S. Lee, S.H. Kim, How to overcome the limitations to determine the resection margin of pituitary tumours with low-field intra-operative MRI during trans-sphenoidal surgery: usefulness of gadolinium-soaked cotton pledgets. Acta Neurochir. 150(8), 763–771 (2008). doi:10.1007/s00701-008-1505-1; discussion 771

    Article  CAS  Google Scholar 

  47. V.K. Anand, T.H. Schwartz, D.H. Hiltzik, A. Kacker, Endoscopic transphenoidal pituitary surgery with real-time intraoperative magnetic resonance imaging. Am. J. Rhinol. 20(4), 401–405 (2006)

    Article  PubMed  Google Scholar 

  48. F. Baumann, C. Schmid, R.L. Bernays, Intraoperative magnetic resonance imaging-guided transsphenoidal surgery for giant pituitary adenomas. Neurosurg. Rev. 33(1), 83–90 (2010). doi:10.1007/s10143-009-0230-4

    Article  PubMed  Google Scholar 

  49. D. Bellut, M. Hlavica, C. Schmid, R.L. Bernays, Intraoperative magnetic resonance imaging-assisted transsphenoidal pituitary surgery in patients with acromegaly. Neurosurg. Focus 29(4), E9 (2010). doi:10.3171/2010.7.FOCUS10164

    Article  PubMed  Google Scholar 

  50. S. Berkmann, J. Fandino, B. Muller, L. Remonda, H. Landolt, Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir. 154(4), 639–647 (2012). doi:10.1007/s00701-012-1285-5

    Article  Google Scholar 

  51. S. Berkmann, J. Fandino, S. Zosso, H.E. Killer, L. Remonda, H. Landolt, Intraoperative magnetic resonance imaging and early prognosis for vision after transsphenoidal surgery for sellar lesions. J. Neurosurg. 115(3), 518–527 (2011). doi:10.3171/2011.4.JNS101568

    Article  PubMed  Google Scholar 

  52. O. De Witte, O. Makiese, D. Wikler, M. Levivier, A. Vandensteene, P. Pandin, D. Baleriaux, J. Brotchi, Transsphenoidal approach with low field MRI for pituitary adenoma. Neurochirurgie 51(6), 577–583 (2005)

    Article  PubMed  Google Scholar 

  53. R. Gerlach, R. du Mesnil de Rochemont, T. Gasser, G. Marquardt, J. Reusch, L. Imoehl, V. Seifert, Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63(2), 272–284 (2008). doi:10.1227/01.NEU.0000312362.63693.78; discussion 284-275

    Article  PubMed  Google Scholar 

  54. J. Jones, J. Ruge, Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg. Focus 23(5), E12 (2007). doi:10.3171/FOC-07/11/E12

    Article  PubMed  Google Scholar 

  55. J.S. Wu, X.F. Shou, C.J. Yao, Y.F. Wang, D.X. Zhuang, Y. Mao, S.Q. Li, L.F. Zhou, Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery 65(1), 63–70 (2009). doi:10.1227/01.NEU.0000348549.26832.51; discussion 61–70

    Article  PubMed  Google Scholar 

  56. G.R. Sutherland, T. Kaibara, D. Louw, D.I. Hoult, B. Tomanek, J. Saunders, A mobile high-field magnetic resonance system for neurosurgery. J. Neurosurg. 91(5), 804–813 (1999). doi:10.3171/jns.1999.91.5.0804

    Article  PubMed  CAS  Google Scholar 

  57. W.A. Hall, W. Galicich, T. Bergman, C.L. Truwit, 3-T intraoperative MR imaging for neurosurgery. J. Neurooncol. 77(3), 297–303 (2006). doi:10.1007/s11060-005-9046-4

    Article  PubMed  Google Scholar 

  58. M.L. Hlavin, J.S. Lewin, B.M. Arafah, Intraoperative magnetic resonance imaging for assessment of chiasmatic decompression and tumour resection during transsphenoidal pituitary surgery. Tech. Neurosurg. 6, 282–288 (2000)

    Google Scholar 

  59. C.H. Martin, R. Schwartz, F. Jolesz, P.M. Black, Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary 2(2), 155–162 (1999)

    Article  PubMed  CAS  Google Scholar 

  60. T.H. Schwartz, P.E. Stieg, V.K. Anand, Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58(1 Suppl), ONS44–51; discussion ONS44–51 (2006)

    Google Scholar 

  61. P.V. Theodosopoulos, J. Leach, R.G. Kerr, L.A. Zimmer, A.M. Denny, B. Guthikonda, S. Froelich, J.M. Tew, Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J. Neurosurg. 112(4), 736–743 (2010). doi:10.3171/2009.6.JNS08916

    Article  PubMed  Google Scholar 

  62. T.W. Vitaz, K.E. Inkabi, C.J. Carrubba, Intraoperative MRI for transphenoidal procedures: short-term outcome for 100 consecutive cases. Clin. Neurol. Neurosurg. 113(9), 731–735 (2011). doi:10.1016/j.clineuro.2011.07.025

    Article  PubMed  Google Scholar 

  63. J.C. Dort, G.R. Sutherland, Intraoperative magnetic resonance imaging for skull base surgery. Laryngoscope 111(9), 1570–1575 (2001). doi:10.1097/00005537-200109000-00014

    Article  PubMed  CAS  Google Scholar 

  64. X.H. Meng, B.N. Xu, S.B. Wei, T. Zhou, X.L. Chen, X.G. Yu, D.B. Zhou, H.Y. Tong, J.S. Zhang, Y. Zhao, Y.Z. Hou, High-field intraoperative magnetic resonance imaging suite with neuronavigation system: implementation and preliminary experience in the pituitary adenoma operation with transsphenoidal approach. Zhonghua wai ke za zhi [Chin. J. Surg.] 49(8), 703–706 (2011)

    Google Scholar 

  65. D. Netuka, V. Masopust, T. Belsan, F. Kramar, V. Benes, One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir. Suppl. 109, 157–159 (2011). doi:10.1007/978-3-211-99651-5_24

    Article  PubMed  Google Scholar 

  66. W.A. Hall, C.L. Truwit, Intraoperative MR imaging. Magn. Reson. Imaging Clin. N. Am. 13(3), 533–543 (2005). doi:10.1016/j.mric.2005.04.001

    Article  PubMed  Google Scholar 

  67. N.J. Szerlip, Y.C. Zhang, D.G. Placantonakis, M. Goldman, K.B. Colevas, D.G. Rubin, E.J. Kobylarz, S. Karimi, M. Girotra, V. Tabar, Transsphenoidal resection of sellar tumors using high-field intraoperative magnetic resonance imaging. Skull Base 21(4), 223–232 (2011). doi:10.1055/s-0031-1277262

    Article  PubMed  Google Scholar 

  68. J.A. Jane Jr, E.R. Laws Jr, Endoscopy versus MR imaging. J. Neurosurg. 112(4), 734 (2010). doi:10.3171/2009.7.JNS091042; discussion 735

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Buchfelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchfelder, M., Schlaffer, SM. Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine 42, 483–495 (2012). https://doi.org/10.1007/s12020-012-9752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9752-6

Keywords

Navigation