Skip to main content

Advertisement

Log in

Hypophosphatemic Rickets: Lessons from Disrupted FGF23 Control of Phosphorus Homeostasis

  • Rare Bone Disease (CB Langman and E Shore, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Fibroblast growth factor-23 (FGF23) regulates phosphate reabsorption in the kidney and therefore plays an essential role in phosphate balance in humans. There is a host of defects that ultimately lead to excess FGF23 levels and thereby cause renal phosphate wasting and hypophosphatemic rickets. We describe the genetic, pathophysiologic, and clinical aspects of this group of disorders with a focus on X-linked hypophosphatemia (XLH), the best characterized of these abnormalities. We also discuss autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR) and tumor-induced osteomalacia (TIO) in addition to other rarer FGF23-mediated conditions. We contrast the FGF23-mediated disorders with FGF23-independent hypophosphatemia, specifically hypophosphatemic rickets with hypercalciuria (HHRH). Errant diagnosis of hypophosphatemic disorders is common. This review aims to enhance the recognition and appropriate diagnosis of hypophosphatemia and to guide appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine. 1958;37:97–142.

    Article  PubMed  CAS  Google Scholar 

  2. The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995;11:130–6.

  3. White KE. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.

    Article  CAS  Google Scholar 

  4. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A. 2007;104:11085–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Lee DB, Walling MW, Brautbar N. Intestinal phosphate absorption: influence of vitamin D and non-vitamin D factors. Am J Physiol. 1986;250:G369–73.

    PubMed  CAS  Google Scholar 

  6. Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20:2348–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–96.

    Article  PubMed  CAS  Google Scholar 

  8. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol. 2009;296:F691–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Murer H, Forster I, Hernando N, Lambert G, Traebert M, Biber J. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary P(i). Am J Physiol. 1999;277:F676–84.

    PubMed  CAS  Google Scholar 

  10. Murer H, Forster I, Hilfiker H, Pfister M, Kaissling B, Lotscher M, et al. Cellular/molecular control of renal Na/Pi-cotransport. Kidney Int Suppl. 1998;65:S2–S10.

    Article  PubMed  CAS  Google Scholar 

  11. Oberbauer R, Schreiner GF, Biber J, Murer H, Meyer TW. In vivo suppression of the renal Na+/Pi cotransporter by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1996;93:4903–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Hoag HM, Martel J, Gauthier C, Tenenhouse HS. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression. J Clin Invest. 1999;104:679–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–50. Reviews the regulation of phosphate absorption in the kidney through NaPi-IIa and NaPi-IIc cotransporters.

    Article  PubMed  CAS  Google Scholar 

  16. Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG, et al. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997;99:1200–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348:1656–63.

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87:4957–60.

    Article  PubMed  CAS  Google Scholar 

  19. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278:37419–26.

    Article  PubMed  CAS  Google Scholar 

  20. Tenenhouse HS, Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996;49(4):1027–32.

    Article  PubMed  CAS  Google Scholar 

  21. Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–81.

    Article  PubMed  CAS  Google Scholar 

  22. Perwad F, Zhang MY, Tenenhouse HS, Portale AA. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol. 2007;293:F1577–83.

    Article  PubMed  CAS  Google Scholar 

  23. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.

    Article  PubMed  CAS  Google Scholar 

  24. Carpenter TO, Imel EA, Holm IA, de Beur SM J, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381–8. Reviews clinical and biochemical features of XLH. Discusses current treatment and monitoring recommendations for individuals with XLH.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Stickler GB. Familial hypophosphatemic vitamin D resistant rickets. The neonatal period and infancy. Acta Paediatr Scand. 1969;58:213–9.

    Article  PubMed  CAS  Google Scholar 

  26. McNair SL, Stickler GB. Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med. 1969;281:512–6.

    Article  PubMed  CAS  Google Scholar 

  27. Frost HM. A unique histological feature of vitamin D resistant rickets observed in four cases. Acta Orthop Scand. 1963;33:220–6.

    Article  PubMed  CAS  Google Scholar 

  28. Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP. X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine. 1989;68:336–52.

    Article  PubMed  CAS  Google Scholar 

  29. Marie PJ, Glorieux FH. Bone histomorphometry in asymptomatic adults with hereditary hypophosphatemic vitamin D-resistant osteomalacia. Metab Bone Dis Relat Res. 1982;4:249–53.

    Article  PubMed  CAS  Google Scholar 

  30. Marie PJ, Glorieux FH. Histomorphometric study of bone remodeling in hypophosphatemic vitamin D-resistant rickets. Metab Bone Dis Relat Res. 1981;3:31–8.

    Article  PubMed  CAS  Google Scholar 

  31. Abe K, Ooshima T, Lily TS, Yasufuku Y, Sobue S. Structural deformities of deciduous teeth in patients with hypophosphatemic vitamin D-resistant rickets. Oral Surg Oral Med Oral Pathol. 1988;65:191–8.

    Article  PubMed  CAS  Google Scholar 

  32. Hillmann G, Geurtsen W. Pathohistology of undecalcified primary teeth in vitamin D-resistant rickets: review and report of two cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:218–24.

    Article  PubMed  CAS  Google Scholar 

  33. Seeto E, Seow WK. Scanning electron microscopic analysis of dentin in vitamin D-resistant rickets—assessment of mineralization and correlation with clinical findings. Pediatr Dent. 1991;13:43–8.

    PubMed  CAS  Google Scholar 

  34. Seow WK, Romaniuk K, Sclavos S. Micromorphologic features of dentin in vitamin D-resistant rickets: correlation with clinical grading of severity. Pediatr Dent. 1989;11:203–8.

    PubMed  CAS  Google Scholar 

  35. Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif Tissue Int. 2009;85:235–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Berndt M, Ehrich JH, Lazovic D, Zimmermann J, Hillmann G, Kayser C, et al. Clinical course of hypophosphatemic rickets in 23 adults. Clin Nephrol. 1996;45:33–41.

    PubMed  CAS  Google Scholar 

  37. Liang G, Vanhouten J, Macica CM. An atypical degenerative osteoarthropathy in Hyp mice is characterized by a loss in the mineralized zone of articular cartilage. Calcif Tissue Int. 2011;89:151–62.

    Article  PubMed  CAS  Google Scholar 

  38. Megerian CA, Semaan MT, Aftab S, Kisley LB, Zheng QY, Pawlowski KS, et al. A mouse model with postnatal endolymphatic hydrops and hearing loss. Hear Res. 2008;237:90–105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lorenz-Depiereux B, Guido VE, Johnson KR, Zheng QY, Gagnon LH, Bauschatz JD, et al. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice. Mamm Genome. 2004;15:151–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Carpenter TO, Mitnick MA, Ellison A, Smith C, Insogna KL. Nocturnal hyperparathyroidism: a frequent feature of X-linked hypophosphatemia. J Clin Endocrinol Metab. 1994;78:1378–83.

    PubMed  CAS  Google Scholar 

  41. Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88:3591–7.

    Article  PubMed  CAS  Google Scholar 

  42. Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991;325:1843–8.

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K. A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 1992;75:879–85.

    PubMed  CAS  Google Scholar 

  44. Seikaly MG, Brown R, Baum M. The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics. 1997;100:879–84.

    Article  PubMed  CAS  Google Scholar 

  45. Haffner D, Wuhl E, Blum WF, Schaefer F, Mehls O. Disproportionate growth following long-term growth hormone treatment in short children with X-linked hypophosphataemia. Eur J Pediatr. 1995;154:610–3.

    Article  PubMed  CAS  Google Scholar 

  46. Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3:658–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Grove-Laugesen D, Rejnmark L. Three-year successful cinacalcet treatment of secondary hyperparathyroidism in a patient with x-linked dominant hypophosphatemic rickets: a case report. Case Rep Endocrinol. 2014;2014:479641.

    PubMed Central  PubMed  Google Scholar 

  48. Carpenter TO, Olear EA, Zhang JH, Ellis BK, Simpson CA, Cheng D, et al. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2014;99:3103–11. Reports results from a clinical trial using Paricalcitol to treat secondary hyperparathyroidism in XLH.

    Article  PubMed  CAS  Google Scholar 

  49. Alon U, Chan JC. Effects of hydrochlorothiazide and amiloride in renal hypophosphatemic rickets. Pediatrics. 1985;75:754–63.

    PubMed  CAS  Google Scholar 

  50. Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009;24:1879–88.

    Article  PubMed  CAS  Google Scholar 

  51. Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97. Reports results from a clinical trial using anti-FGF23 antibody to treat XLH by targeting the underlying disease-causing mechanism, FGF23 excess.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med. 2011;364:1678–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60:2079–86.

    Article  PubMed  CAS  Google Scholar 

  54. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002;143:3179–82.

    Article  PubMed  CAS  Google Scholar 

  55. Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res. 2007;22:520–6.

    Article  PubMed  CAS  Google Scholar 

  56. Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82:674–81.

    Article  PubMed  CAS  Google Scholar 

  57. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108:E1146–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96:3541–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38:1248–50.

    Article  PubMed  CAS  Google Scholar 

  61. Perry W, Stamp TC. Hereditary hypophosphataemic rickets with autosomal recessive inheritance and severe osteosclerosis. A report of two cases. J Bone Joint Surg Br. 1978;60-B:430–4.

    PubMed  CAS  Google Scholar 

  62. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86:267–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86:273–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34:379–81.

    Article  PubMed  CAS  Google Scholar 

  65. White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86:497–500.

    Article  PubMed  CAS  Google Scholar 

  66. Weidner N. Review and update: oncogenic osteomalacia-rickets. Ultrastruct Pathol. 1991;15:317–33.

    Article  PubMed  CAS  Google Scholar 

  67. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol. 2004;28:1–30.

    Article  PubMed  Google Scholar 

  68. de Beur SM J. Tumor-induced osteomalacia. JAMA. 2005;294:1260–7.

    Article  Google Scholar 

  69. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18:R53–77. A comprehensive review of clinical aspects of tumor-induced osteomalacia with attention to recent developments in diagnostics and tumor localization.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Geller JL, Khosravi A, Kelly MH, Riminucci M, Adams JS, Collins MT. Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res. 2007;22:931–7.

    Article  PubMed  CAS  Google Scholar 

  71. Beighton P. Osteoglophonic dysplasia. J Med Genet. 1989;26:572–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Farrow EG, Davis SI, Mooney SD, Beighton P, Mascarenhas L, Gutierrez YR, et al. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am J Med Genet A. 2006;140:537–9.

    Article  PubMed  CAS  Google Scholar 

  73. Hoffman WH, Jueppner HW, Deyoung BR, O’Dorisio MS, Given KS. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A. 2005;134:233–6.

    Article  PubMed  Google Scholar 

  74. Sethi SK, Hari P, Bagga A. Elevated FGF-23 and parathormone in linear nevus sebaceous syndrome with resistant rickets. Pediatr Nephrol. 2010;25:1577–8.

    Article  PubMed  Google Scholar 

  75. Lim YH, Ovejero D, Sugarman JS, Deklotz CM, Maruri A, Eichenfield LF, et al. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet. 2014;23:397–407.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet J Rare Dis. 2008;3:12.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112:683–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Konishi K, Nakamura M, Yamakawa H, Suzuki H, Saruta T, Hanaoka H, et al. Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci. 1991;301:322–8.

    Article  PubMed  CAS  Google Scholar 

  79. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A. 2008;105:3455–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res. 2013;28:1378–85.

    Article  PubMed  CAS  Google Scholar 

  81. Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 2012;8:e1002708.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–7.

    Article  PubMed  CAS  Google Scholar 

  83. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Devuyst O, Thakker RV. Dent’s disease. Orphanet J Rare Dis. 2010;5:28.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Bokenkamp A, Bockenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, et al. Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr. 2009;155:94–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

BK Goldsweig declares no conflicts of interest.

TO Carpenter has received research grants from Ultragenyx and Kyowa Hakko Kirin and consulting fees from Ultragenyx, Kyowa Hakko Kirin, and Pfizer and has received research support from Abbott for a NIH-sponsored study.

Human and Animal Rights and Informed Consent

All studies by Thomas Carpenter involving human and/or animal subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas O. Carpenter.

Additional information

This article is part of the Topical Collection on Rare Bone Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldsweig, B.K., Carpenter, T.O. Hypophosphatemic Rickets: Lessons from Disrupted FGF23 Control of Phosphorus Homeostasis. Curr Osteoporos Rep 13, 88–97 (2015). https://doi.org/10.1007/s11914-015-0259-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0259-y

Keywords

Navigation