Skip to main content

Advertisement

Log in

Bone loss or lost bone: Rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Recent reports suggest that bone loss begins during late perimenopause at a dramatic rate, even before estrogen levels plummet. During the ensuing 5 years, there is evidence of the beginnings of microarchitectural deterioration, which impacts bone strength and ultimately enhances its propensity to fracture. The diagnosis of osteoporosis based on T-scores alone, or through stratification for a high fracture risk by FRAX, excludes these women who are rapidly losing bone. Because all antiosteoporosis therapies, in particular bisphosphonates, reduce bone loss, we propose aggressive, likely short-term therapy with a goal to reduce bone loss, stabilize bone density, and prevent microarchitectural deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stepnick LS: The frequency of bone disease. In Bone Health and Osteoporosis: A Report of the Surgeon General. Edited by McGowan JA, Raisz LG, Noonan AS, Elderkin AL. Washington, DC: Office of the US Surgeon General; 2004:68–87.

    Google Scholar 

  2. Zaidi M: Skeletal remodeling in health and disease. Nat Med 2007, 13:791–801.

    Article  CAS  PubMed  Google Scholar 

  3. Miller PD: Guidelines for the diagnosis of osteoporosis: Tscores vs fractures. Rev Endocrinol Metabol Disord 2006, 7:75–89.

    Article  Google Scholar 

  4. Turner CH: Bone strength: current concepts. Ann N Y Acad Sci 2006, 1068:429–446.

    Article  PubMed  Google Scholar 

  5. Watts NB, Geusens P, Barton IP, Felsenberg D: Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 2005, 20:2097–2104.

    Article  PubMed  Google Scholar 

  6. Cummings SR, Karpf DB, Harris F, et al.: Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002, 112:281–289.

    Article  CAS  PubMed  Google Scholar 

  7. FRAX: WHO Fracture Risk Assessment Tool. Available at http://www.sheffield.ac.uk/FRAX. Accessed October 1, 2009.

  8. Sowers MR, Jannausch M, McConnell D, et al.: Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab 2006, 91:1261–1267.

    Article  CAS  PubMed  Google Scholar 

  9. Akhter MP, Lappe JM, Davies KM, Recker RR: Transmenopausal changes in trabecular bone structure. Bone 2007, 41:111–116.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen ND, Ahlborg HG, Center JR, et al.: Residual lifetime risk of fracture in men and women. J Bone Miner Res 2007, 22:781–788.

    Article  PubMed  Google Scholar 

  11. Epstein S, Inzerillo AM, Caminis J, Zaidi M: Disorders associated with acute rapid and severe bone loss. J Bone Miner Res 2003, 18:2083–2084.

    Article  PubMed  Google Scholar 

  12. Canalis E, Mazziotti G, Giustina A, Bilezikian J: Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporosis Int 2007, 18:1319–1328.

    Article  CAS  Google Scholar 

  13. Schaffler MB, Choi K, Milgrom C: Aging and matrix microdamage accumulation in human compact bone. Bone 1995, 17:521–525.

    Article  CAS  PubMed  Google Scholar 

  14. Schuit SC, van der Klift M, Weel AE, et al.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004, 34:195–202.

    Article  CAS  PubMed  Google Scholar 

  15. Sarkar S, Mitlak BH, Wong M, et al.: Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 2002, 17:11–14.

    Article  Google Scholar 

  16. Dempster DW: The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 2000, 15:20–23.

    Article  CAS  PubMed  Google Scholar 

  17. Li C: Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res 2006, 21:865–875.

    Article  CAS  PubMed  Google Scholar 

  18. Lafage MH, Balena R, Battle MA, et al.: Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in mini-pigs. A one-year study. J Clin Invest 1995, 95:2127–2133.

    Article  CAS  PubMed  Google Scholar 

  19. Silverman SL: Selecting patients for osteoporosis therapy. Ann N Y Acad Sci 2007, 1117:264–272.

    Article  PubMed  Google Scholar 

  20. Sandhu SK, Nguyen ND, Center JR, et al.: Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporosis Int 2009 Jul 25 (Epub ahead of print).

  21. Sowers MR, Greendale GA, Bondarenko I, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporosis Int 2003, 14:191–197.

    Article  CAS  Google Scholar 

  22. Seifert-Klauss V, Mueller JE, Luppa P, et al.: Bone metabolism during the perimenopausal transition: a prospective study. Maturitas 2002, 41:23–33.

    Article  CAS  PubMed  Google Scholar 

  23. Recker R, Lappe J, Davies KM, Heaney R: Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 2004, 19:1628–1633.

    Article  PubMed  Google Scholar 

  24. Liu XS, Sajda P, Saha PK, et al.: Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 2006, 21:1608–1617.

    Article  PubMed  Google Scholar 

  25. Bonnick SL, Shulman I: Monitoring osteoporosis therapy: bone mineral density, bone turnover markers or both? Am J Med 2006, 119S:S25–S31.

    Article  Google Scholar 

  26. Ebeling PR, Atley LM, Guthrie JR, et al.: Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 1996, 81:3366–3371.

    Article  CAS  PubMed  Google Scholar 

  27. Chapurlat RD, Garnero P, Sornay-Rendu E, et al.: Longitudinal study of bone loss in pre and perimenopausal women: evidence for bone loss in perimenopausal women. Osteoporosis Int 2000, 11:493–498.

    Article  CAS  Google Scholar 

  28. Rosen CJ, Chestnut CH III, Mallinak NJ: The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 1997, 82:1904–1910.

    Article  CAS  PubMed  Google Scholar 

  29. Seeman E, Bianchi G, Khosla S, et al.: Bone fragility in men: where are we? Osteoporosis Int 2006, 17:1577–1583.

    Article  CAS  Google Scholar 

  30. Khosla S, Riggs BL, Atkinson EJ, et al.: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based non-invasive in vivo assessment. J Bone Miner Res 2006, 21:124–131.

    Article  PubMed  Google Scholar 

  31. Keaveny TM, Donley DW, Hoffmann PF, et al.: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 2007, 22:149–157.

    Article  CAS  PubMed  Google Scholar 

  32. Kleerekoper M: Osteoporosis prevention and therapy: preserving and building strength through bone quality. Osteoporosis Int 2006, 17:1707–1715.

    Article  CAS  Google Scholar 

  33. McClung MR, Wasnich RD, Hosking DJ, et al.: Prevention of postmenopausal bone loss: six year results from the Early Postmenopausal Intervention Cohort Study. J Clin Endocrinol Metab 2004, 89:4879–4885.

    Article  CAS  PubMed  Google Scholar 

  34. Ravn P, Weiss SR, Rodriguez-Portales JA, et al.: Alendronate in early post-menopausal women: effects on bone mass during long-term treatment and after withdrawal. Alendronate Osteoporosis Prevention Study Group. J Clin Endocrinol Metab 2000, 85:1492–1497.

    Article  CAS  PubMed  Google Scholar 

  35. Mortensen L, Charles P, Bekker PJ, et al.: Risedronate increases bone mass in an early post-menopausal population: two years of treatment plus one year of follow-up. J Clin Endocrinol Metab 1998, 83:396–402.

    Article  CAS  PubMed  Google Scholar 

  36. Hooper MJ, Ebeling PR, Roberts AP, et al.: Risedronate prevents bone loss in early post-menopausal women: a prospective, randomized, placebo-controlled trial. Climacteric 2005, 8:251–262.

    Article  CAS  PubMed  Google Scholar 

  37. Black DM, Schwartz AV, Ensrud KE, et al.: Effects of continuing or stopping alendronate after 5 years of treatment the Fracture Intervention Trial Long-arm Extension (FLEX): a randomized trial. JAMA 2006, 296:2927–2938.

    Article  CAS  PubMed  Google Scholar 

  38. McClung MR, Wasnich RD, Recker R, et al.: Oral daily ibandronate prevents bone loss in early postmenopausal women without osteoporosis. J Bone Miner Res 2004, 19:11–18.

    Article  CAS  PubMed  Google Scholar 

  39. Steinberg KK, Freni-Titulaer LW, DePuey EG, et al.: Sex steroids and bone density in premenopausal and perimenopausal women. J Clin Endocrinol Metab 1989, 69:533–539.

    Article  CAS  PubMed  Google Scholar 

  40. Perrone G, Galoppi P, Capri O, et al.: Lumbar and femoral bone density in perimenopausal women with irregular cycles. Int J Fertil Menopausal Stud 1995, 40:120–125.

    CAS  PubMed  Google Scholar 

  41. Ito M, Nakamura T, Tsurusaki K, et al.: Effects of menopause on age-dependent bone loss in the axial and appendicular skeletons in healthy Japanese women. Osteoporosis Int 1999, 10:377–383.

    Article  CAS  Google Scholar 

  42. Recker R, Lappe J, Davies K, Heaney R: Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 2001, 15:1965–1973.

    Article  Google Scholar 

  43. Sowers MR, Finkelstein JS, Ettinger, B, et al.: The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporosis Int 2003, 14:44–52.

    Article  CAS  Google Scholar 

  44. Seifert-Klauss V, Link T, Heumann C, et al.: Influence of pattern of menopausal transition on amount of trabecular bone loss. Results from a 6-year prospective longitudinal study. Maturitas 2006, 55:317–324.

    Article  CAS  PubMed  Google Scholar 

  45. Randolph JF Jr, Sowers M, Bondarenko IV, et al.: Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab 2004, 89:1555–1561.

    Article  CAS  PubMed  Google Scholar 

  46. Guo XE, Kim CH: Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 2002, 30:404–411.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mone Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, M., Turner, C.H., Canalis, E. et al. Bone loss or lost bone: Rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss. Curr Osteoporos Rep 7, 118–126 (2009). https://doi.org/10.1007/s11914-009-0021-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-009-0021-4

Keywords

Navigation