Skip to main content

Advertisement

Log in

Immunological Consequences of JAK Inhibition: Friend or Foe?

  • Myeloproliferative Disorders (C Harrison, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Over the last decade, unparalleled advances have been made within the field of ‘Philadelphia chromosome’-negative myeloproliferative neoplasms (MPN) regarding both disease pathogenesis and therapeutic targeting. The discovery of deregulated JAK-STAT signalling in MPN led to the rapid development of JAK inhibitor agents, targeting both mutated and wild-type JAK, which have significantly altered the therapeutic paradigm for patients with MPN. Although the largest population treated with these agents incorporates those with myelofibrosis, increasing data supports potential usage in other MPNs such as essential thromocythaemia and polycythaemia vera. Many MPNs are associated with a hyperinflammatory state and deregulation of immune homeostasis. Over the last few years, research has focused on attempting to decipher the complex and context-dependent changes that contribute to this immune deregulation. Moreover, very recent studies have demonstrated significant JAK inhibitor-mediated effects within the T cell, natural killer cell and dendritic cell compartments following exposure to JAK inhibitors. In parallel, case reports of infections occurring following exposure to ruxolitinib, many of which are atypical, have focused research efforts on delineating JAK inhibitor-associated immunological consequences. Within this review article, we will describe what is currently known about MPN-associated immune deregulation and JAK inhibitor-mediated immunomodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):779–90.

    Article  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. Erratum in: Lancet 2005; 366(9480)122.

    Article  CAS  PubMed  Google Scholar 

  5. Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tefferi A, Gilliland DG. Oncogenes in myeloproliferative disorders. Cell Cycle. 2007;6:550–66.

    Article  CAS  PubMed  Google Scholar 

  7. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007;136(5):745–51.

    Article  CAS  PubMed  Google Scholar 

  9. Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lympho-myeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2006;109:71–7.

    Article  PubMed  Google Scholar 

  10. United States full prescribing information. Jakafi (ruxolitinib). Revised 11/2011. Available at http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202192lbl.pdf.

  11. EMA Summary of Product Characteristics. Jakavi. Novartis Pharmaceuticals UK Ltd. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product_Information/human/002464/WC500133223.pdf. Accessed 3/12/2014

  12. Harrison C, Kiladjian J-J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. COMFORT-II trial.

    Article  CAS  PubMed  Google Scholar 

  13. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. COMFORT-I trial.

    Article  CAS  PubMed  Google Scholar 

  14. Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Eghtedar A, Verstovsek S, Estrov Z, et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood. 2012;119:4614–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Papp KA, Menter A, Strober B, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.

    Article  CAS  PubMed  Google Scholar 

  17. Xing L, Dai Z, Jabbari A, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lee EB, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.

    Article  PubMed  Google Scholar 

  19. Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel Janus kinase 1,2 inhibitor. Chest. 2013;143:1478–9.

    Article  PubMed  Google Scholar 

  20. Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med. 2013;369:681–3.

    Article  CAS  PubMed  Google Scholar 

  21. Caocci G, Murgia F, Podda L, Solinas A, Atzeni S, La Nasa G. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia. 2014;28:225–7.

    Article  CAS  PubMed  Google Scholar 

  22. Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369:197–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yamaoka K, Saharinen P, Pesu M, Holt VE, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Müller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993;366(6451):129–35.

    Article  PubMed  Google Scholar 

  26. Schindler C, Levy D, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.

    Article  CAS  PubMed  Google Scholar 

  27. Krishnan K, Pine R, Krolewski JJ. Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon signaling in a dominant manner. Eur J Biochem. 1997;247:298–305.

    Article  CAS  PubMed  Google Scholar 

  28. O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol. 2007;44(10):2497–506.

    Article  PubMed  Google Scholar 

  29. Waters MJ, Brooks AJ. JAK2 activation by growth hormone and other cytokines. Biochem J. 2015;466(1):1–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377:65.

    Article  CAS  PubMed  Google Scholar 

  31. Ishizaki M, Akimoto T, Muromoto R, et al. Involvement of tyrosine kinase-2 in both theIL-12/Th1 and IL-23/Th17 axes in vivo. J Immunol. 2011;187(1):181–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tokumasa N, Suto A, Kagami S, et al. Expression of Tyk2 in dendritic cells is required for IL-12, IL-23, and IFN-gamma production and the induction of Th1 cell differentiation. Blood. 2007;110(2):553–60.

    Article  CAS  PubMed  Google Scholar 

  33. Prchal-Murphy M, Witalisz-Siepracka A, Bednarik K, et al. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. Oncoimmunology. 2015.

  34. Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003;23(3):147–61.

    Article  CAS  PubMed  Google Scholar 

  35. Yao Z, Kanno Y, Kerenyi M, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007;109(10):4368–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.

    Article  CAS  PubMed  Google Scholar 

  37. Barosi G. An immune dysregulation in MPN. Curr Hematol Malig Rep. 2014;9:331–9.

    Article  PubMed  Google Scholar 

  38. Kristinsson SY, Landgren O, Samuelsson J, Björkholm M, Goldin LR. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010;95(7):1216–20.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Barcellini W, Iurlo A, Radice T, et al. Increased prevalence of autoimmune phenomena in myelofibrosis: relationship with clinical and morphological characteristics, and with immunoregulatory cytokine patterns. Leuk Res. 2013;37(11):1509–15.

    Article  CAS  PubMed  Google Scholar 

  40. Skov V, Larsen TS, Thomassen M, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012;36(11):1387–92.

    Article  CAS  PubMed  Google Scholar 

  41. Skov V, Riley CH, Thomassen M, et al. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma. 2013;54(10):2269–73.

    Article  CAS  PubMed  Google Scholar 

  42. Tefferi A, Vaidya R, Caramazza D, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29(10):1356–63.

    Article  CAS  PubMed  Google Scholar 

  43. Vannucchi AM, Bianchi L, Paoletti F, et al. A pathologic pathway linking thrombopoietin, GATA-1 and TGF-β1 in the development of myelofibrosis. Blood. 2005;105(9):3493–501.

    Article  CAS  PubMed  Google Scholar 

  44. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kundra A, Baptiste S, Chen C, Sindhu H and Wang JC. Programmed cell death receptor (PD-1), PD-1 ligand (PD-L1) expression and myeloid derived suppressor cells (MDSC) in myeloid neoplasms implicate the mechanism of IMiD treatment of myelofibrosis. Blood (supplement) 2013; abstract 2837.

  46. Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–53.

    Article  CAS  PubMed  Google Scholar 

  47. Wilkins BS, Radia D, Woodley C, et al. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib. Haematologica. 2013;98(12):1872–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lee SC, Feenstra J, Georghiou PR. Pneumocystis jiroveci pneumonitis complicating ruxolitinib therapy. BMJ Case Rep. 2014. 2014.

  49. Landman GW, Arend SM, van Dissel JT. Ruxolitinib can mask symptoms and signs of necrotizing fasciitis. J Infect. 2013;66(3):296–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kim Y-K, Lee SR, Park Y, et al. Efficacy of ruxolitinib in Korean myelofibrosis patients and cases complicated TB lymphadenitis during the treatment. Blood. 2013;122:1596.

    Google Scholar 

  51. Mesa R, Egyed M, Szoke A et al. Results of the PERSIST-1 phase III study of pacritinib (PAC) versus best available therapy (BAT) in primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF), or post-essential thrombocythemia-myelofibrosis (PET-MF). J Clin Oncol 33, 2015 (suppl; abstr LBA7006)

  52. Singer J, Al-Fayoumi S, Ma H et al. Comprehensive kinase profile of pacritinib, a non-myelosuppressive JAK2 kinase inhibitor in phase 3 development in primary and post ET/PV myelofibrosis. [abstract] 2013; Blood: 122 (21) 1874.

  53. Pardanani A, Harrison C, Cortes J et al. Results of a randomized, double-blind, placebo-controlled phase III study (JAKARTA) of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis (MF). [abstract] 2013; Blood: 122 (21) 393.

  54. Zhang Q, Zhang Y, Diamond S, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014;42(10):1656–62.

    Article  PubMed  Google Scholar 

  55. Pardanani A, Gotlib J, Gupta V et al. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 Iinhibitor, for the treatment of myelofibrosis. [abstract] 2013; Blood: 122 (21) 108.

  56. Verstovsek S, Mesa R, Salama M et al. Phase I study of LY2784544, a JAK2 selective inhibitor, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). [abstract] 2013; Blood: 122 (21).

  57. Meyer DM, Jesson MI, Li X, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41.

    Article  Google Scholar 

  58. Kremer JM, Bloom BJ, Breedveld FC, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.

    Article  CAS  PubMed  Google Scholar 

  59. Cohen S, Radominski SC, Gomez-Reino JJ, Wang L, Krishnaswami S, Wood SP, et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(11):2924–37.

    Article  CAS  PubMed  Google Scholar 

  60. Wollenhaupt J, Silverfield J, Lee EB, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long term extension studies. J Rheumatol. 2014;41(5):837–52.

    Article  CAS  PubMed  Google Scholar 

  61. Vincenti F, Tedesco Silva H, Busque S, et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant : Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12:2446–56.

    Article  CAS  Google Scholar 

  62. Massa M, Rosti V, Campanelli R, Fois G, Barosi G. Rapid and long-lasting decrease of T-regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia. 2014;28(2):449–51.

    Article  CAS  PubMed  Google Scholar 

  63. Keohane C, Kordasti SY, Siedl T et al. JAK inhibition reduces CD25 high CD27+ FOXp3+ T regulatory cells and causes a silencing of T effector cells in patients with myeloproliferative neoplasms whilst promoting a TH17 phenotype. Abstract 4092 Blood 2013

  64. Sharma MD, Hou DY, Baban B, et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity. 2010;33(6):942–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Parampalli Yajnanarayana S, Stübig T, Cornez I, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015 [Epub ahead of print]

  66. Perner F, Saalfeld F, Schnoeder T et al. Specificity of JAK-kinase inhibition determines impact on T-cell function. [abstract] 2013; Blood: 122 (21) 1410.

  67. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40. Review.

    Article  CAS  PubMed  Google Scholar 

  69. Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct. 2003;32:93–114. Epub 2002. Review. 32, 93-114.

    Article  CAS  PubMed  Google Scholar 

  70. De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci U S A. 2011;108(2):728–32.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Gersuk GM, Carmel R, Pattamakom S, Challita PM, Rabinowitz AP, Pattengale PK. Quantitative and functional studies of impaired natural killer (NK) cells in patients with myelofibrosis, essential thrombocythemia, and polycythemia vera. I. A potential role for platelet-derived growth factor in defective NK cytotoxicity. Nat Immun. 1993;12(3):136–51.

    CAS  PubMed  Google Scholar 

  73. Riley CH, Hansen M, Brimnes MK, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol. 2015;94(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  74. Schönberg K, Rudolph J, Vonnahme M et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015.

  75. Merad M, Manz M. Dendritic cell homeostasis. Blood. 2009;113(15):3418–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Watowich S, Liu YJ. Mechanisms regulating dendritic cell specification and development. J Exp Med. 2003;198(2):305–13.

    Article  Google Scholar 

  77. Li HS, Watowich SS. Diversification of dendritic cell subsets: emerging roles for STAT proteins. JAKSTAT. 2013;2(4):e25112.

    PubMed Central  PubMed  Google Scholar 

  78. Zhong J, Yang P, Muta K, et al. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock. PLoS ONE. 2010;5(3):e9593.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Heine A, Held SA, Daecke SN, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122(7):1192–202.

    Article  CAS  PubMed  Google Scholar 

  80. Kubo S, Yamaoka K, Kondo M, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73(12):2192–8.

    Article  CAS  PubMed  Google Scholar 

  81. Spoer S, Mathew N, Bscheider M et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. 2014; Blood: 123 (24).

  82. Teshima T. JAK inhibitors: a home run for GVHD patients? Blood. 2014;123(24):3691–3.

    Article  CAS  PubMed  Google Scholar 

  83. Spoerl S, Maas-Bauer K, Verbeek M et al. Response to JAK 1/2 inhibition in patients with corticosteroid-refractory acute graft-versus-host disease. ASH 2014 meeting abstract

  84. Carniti C, Gimondi S, Vendramin A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015.

  85. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ports WC, Khan S, Lan S, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol. 2013;169(1):137–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hsu L, Armstrong A. JAK inhibitors: treatment efficacy and safety profile in patients with psoriasis. J Immunol Res. 2014;2014:283617.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Punwani N, Scherle P, Flores R, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Donal P. McLornan reports honoraria, speaker’s fees paid and travel expenses covered from Novartis.

Alesia A. Khan declares no potential conflicts of interest.

Claire N. Harrison is a section editor for Current Hematologic Malignancy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. Where work by the authors concerning human subjects is quoted, this was with full ethical approval and informed consent

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donal P. McLornan.

Additional information

This article is part of the Topical Collection on Myeloproliferative Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLornan, D.P., Khan, A.A. & Harrison, C.N. Immunological Consequences of JAK Inhibition: Friend or Foe?. Curr Hematol Malig Rep 10, 370–379 (2015). https://doi.org/10.1007/s11899-015-0284-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0284-z

Keywords

Navigation