Skip to main content
Log in

Exercise Intolerance in Chronic Heart Failure: The Role of Cortisol and the Catabolic State

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF) is a complex clinical syndrome leading to exercise intolerance due to muscular fatigue and dyspnea. Hemodynamics fail to explain the reduced exercise capacity, while a significant skeletal muscular pathology seems to constitute the main underlying mechanism for exercise intolerance in CHF patients. There have been proposed several metabolic, neurohormonal and immune system abnormalities leading to an anabolic/catabolic imbalance that plays a central role in the pathogenesis of the wasting process of skeletal muscle myopathy. The impairment of the anabolic axes is associated with the severity of symptoms and the poor outcome in CHF, whereas increased cortisol levels are predictive of exercise intolerance, ventilatory inefficiency and chronotropic incompetence, suggesting a significant contributing mechanism to the limited functional status. Exercise training and device therapy could have beneficial effects in preventing and treating muscle wasting in CHF. However, specific anabolic treatment needs more investigation to prove possible beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349(9058):1050–3. doi:10.1016/S0140-6736(96)07015-8.

    Article  CAS  PubMed  Google Scholar 

  2. Katz AM, Katz PB. Diseases of the heart in the works of Hippocrates. Br Heart J. 1962;24:257–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46. doi:10.1136/hrt.2003.025270.

    Article  PubMed  Google Scholar 

  4. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad.

    Article  PubMed  Google Scholar 

  5. Franciosa JA, Baker BJ, Seth L. Pulmonary versus systemic hemodynamics in determining exercise capacity of patients with chronic left ventricular failure. Am Heart J. 1985;110(4):807–13.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson JR, Martin JL, Ferraro N. Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am J Cardiol. 1984;53(9):1308–15.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson JR, Mancini DM, Dunkman WB. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation. 1993;87(2):470–5.

    Article  CAS  PubMed  Google Scholar 

  8. Massie B, Conway M, Yonge R, Frostick S, Ledingham J, Sleight P, et al. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation. 1987;76(5):1009–19.

    Article  CAS  PubMed  Google Scholar 

  9. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85(5):1751–9.

    Article  CAS  PubMed  Google Scholar 

  10. Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994;72(2 Suppl):S36–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Piepoli MF, Kaczmarek A, Francis DP, Davies LC, Rauchhaus M, Jankowska EA, et al. Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation. 2006;114(2):126–34. doi:10.1161/CIRCULATIONAHA.105.605980.

    Article  PubMed  Google Scholar 

  12. • Middlekauff HR. Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circ Heart Fail. 2010;3(4):537–46. doi:10.1161/CIRCHEARTFAILURE.109.903773. This is a review paper focusing on the role of skeletal muscle myopathy in the exercise limitation of the heart failure patient.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, et al. Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann Intern Med. 1998;129(4):286–93.

    Article  CAS  PubMed  Google Scholar 

  14. • Arena R, Myers J, Abella J, Pinkstaff S, Brubaker P, Kitzman DW, et al. Cardiopulmonary exercise testing is equally prognostic in young, middle-aged and older individuals diagnosed with heart failure. International journal of cardiology. 2011;151(3):278–83. doi:10.1016/j.ijcard.2010.05.056. This is a multicenter trial investigating the prognostic role of cardiopulmonary exercise testing in patients with heart failure that focuses not only on elderly (as in other studies) but also on middle-aged and younger patients.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mehra MR, Kobashigawa J, Starling R, Russell S, Uber PA, Parameshwar J, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant. 2006;25(9):1024–42. doi:10.1016/j.healun.2006.06.008.

    Article  PubMed  Google Scholar 

  16. Nanas SN, Nanas JN, Sakellariou D, Dimopoulos SK, Drakos SG, Kapsimalakou SG, et al. VE/VCO2 slope is associated with abnormal resting haemodynamics and is a predictor of long-term survival in chronic heart failure. European journal of heart failure. 2006;8(4):420–7. doi:10.1016/j.ejheart.2005.10.003.

    Article  PubMed  Google Scholar 

  17. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83. doi:10.1016/S0140-6736(03)12892-9.

    Article  CAS  PubMed  Google Scholar 

  18. Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, et al. The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013. doi:10.1016/j.jjcc.2013.05.007.

    PubMed  Google Scholar 

  19. • Manetos C, Dimopoulos S, Tzanis G, Vakrou S, Tasoulis A, Kapelios C, et al. Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance, ventilatory inefficiency, and impaired autonomic control in heart failure. J Heart Lung Transplant. 2011;30(12):1403–8. doi:10.1016/j.healun.2011.08.020. This study investigates microcirculatory alterations of heart failure patients by using Near-InfraRed Spectroscopy methodology and its association with the CHF severity as assessed by cardiopulmonary exercise testing parameters.

    Article  PubMed  Google Scholar 

  20. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90. doi:10.1152/ajpheart.00554.2011.

    Article  CAS  PubMed  Google Scholar 

  21. Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol. 1999;33(4):959–65.

    Article  CAS  PubMed  Google Scholar 

  22. Harrington D, Anker SD, Chua TP, Webb-Peploe KM, Ponikowski PP, Poole-Wilson PA, et al. Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. 1997;30(7):1758–64.

    Article  CAS  PubMed  Google Scholar 

  23. Schulze PC, Linke A, Schoene N, Winkler SM, Adams V, Conradi S, et al. Functional and morphological skeletal muscle abnormalities correlate with reduced electromyographic activity in chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2004;11(2):155–61.

    Article  PubMed  Google Scholar 

  24. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, et al. Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation. 1989;80(5):1338–46.

    Article  CAS  PubMed  Google Scholar 

  25. Okita K, Yonezawa K, Nishijima H, Hanada A, Nagai T, Murakami T, et al. Muscle high-energy metabolites and metabolic capacity in patients with heart failure. Med Sci Sports Exerc. 2001;33(3):442–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation. 1990;81(2):518–27.

    Article  CAS  PubMed  Google Scholar 

  27. Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K. Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J. 1997;18(6):971–80.

    Article  CAS  PubMed  Google Scholar 

  28. Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, et al. Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol. 1999;33(7):1956–63.

    Article  CAS  PubMed  Google Scholar 

  29. Vescovo G, Serafini F, Facchin L, Tenderini P, Carraro U, Dalla Libera L, et al. Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart. 1996;76(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  30. Lipkin DP, Jones DA, Round JM, Poole-Wilson PA. Abnormalities of skeletal muscle in patients with chronic heart failure. International journal of cardiology. 1988;18(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  31. Massie BM, Simonini A, Sahgal P, Wells L, Dudley GA. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure. J Am Coll Cardiol. 1996;27(1):140–5. doi:10.1016/0735-1097(95)00416-5.

    Article  CAS  PubMed  Google Scholar 

  32. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34.

    Article  CAS  PubMed  Google Scholar 

  33. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70.

    Article  CAS  PubMed  Google Scholar 

  34. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J. 1998;12(10):871–80.

    CAS  PubMed  Google Scholar 

  35. Moriyama Y, Yasue H, Yoshimura M, Mizuno Y, Nishiyama K, Tsunoda R, et al. The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity. J Clin Endocrinol Metab. 2000;85(5):1834–40.

    CAS  PubMed  Google Scholar 

  36. Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD, Alexopoulos G, Ktenas V, Rapti AC, et al. Hormonal profile in patients with congestive heart failure. International journal of cardiology. 2003;87(2–3):179–83.

    Article  PubMed  Google Scholar 

  37. Jankowska EA, Biel B, Majda J, Szklarska A, Lopuszanska M, Medras M, et al. Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival. Circulation. 2006;114(17):1829–37. doi:10.1161/CIRCULATIONAHA.106.649426.

    Article  CAS  PubMed  Google Scholar 

  38. •• Pastor-Perez FJ, Manzano-Fernandez S, Garrido Bravo IP, Nicolas F, Tornel PL, Lax A, et al. Anabolic status and functional impairment in men with mild chronic heart failure. Am J Cardiol. 2011;108(6):862–6. doi:10.1016/j.amjcard.2011.05.016. This study investigates the role of hormonal anabolic impairment showing its association with exercise intolerance in heart failure.

    Article  CAS  PubMed  Google Scholar 

  39. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Yu J, et al. Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol. 2002;39(7):1175–81.

    Article  CAS  PubMed  Google Scholar 

  40. • Guder G, Frantz S, Bauersachs J, Allolio B, Ertl G, Angermann CE, et al. Low circulating androgens and mortality risk in heart failure. Heart. 2010;96(7):504–9. doi:10.1136/hrt.2009.181065. This is a prospective cohort study about anabolic sex steroid deficiency in heart failure and its association with poor prognosis.

    Article  CAS  PubMed  Google Scholar 

  41. • Wehr E, Pilz S, Boehm BO, Marz W, Grammer T, Obermayer-Pietsch B. Low free testosterone is associated with heart failure mortality in older men referred for coronary angiography. European journal of heart failure. 2011;13(5):482–8. doi:10.1093/eurjhf/hfr007. This is a prospective study that included 2078 patients referred for coronary angiography showing that low free testosterone levels are associated with heart failure mortality.

    Article  CAS  PubMed  Google Scholar 

  42. Mangieri E, Croce CT, Tanzilli G, Lomurno A, Mangiaracina F, Bonifacio V, et al. Blood levels of somatotropic hormone in patients with various degrees of heart failure. G Ital Cardiol. 1994;24(7):845–52.

    CAS  PubMed  Google Scholar 

  43. Anker SD, Volterrani M, Pflaum CD, Strasburger CJ, Osterziel KJ, Doehner W, et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol. 2001;38(2):443–52.

    Article  CAS  PubMed  Google Scholar 

  44. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 1989;80(2):299–305.

    Article  CAS  PubMed  Google Scholar 

  45. Anker SD, Ponikowski PP, Clark AL, Leyva F, Rauchhaus M, Kemp M, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20(9):683–93. doi:10.1053/euhj.1998.1446.

    Article  CAS  PubMed  Google Scholar 

  46. Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K, Yamamoto T, Fujii M, et al. Serum cortisol as a useful predictor of cardiac events in patients with chronic heart failure: the impact of oxidative stress. Circ Heart Fail. 2009;2(6):608–15. doi:10.1161/CIRCHEARTFAILURE.109.868513.

    Article  CAS  PubMed  Google Scholar 

  47. Guder G, Bauersachs J, Frantz S, Weismann D, Allolio B, Ertl G, et al. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation. 2007;115(13):1754–61. doi:10.1161/CIRCULATIONAHA.106.653964.

    Article  PubMed  Google Scholar 

  48. Anker SD, Clark AL, Kemp M, Salsbury C, Teixeira MM, Hellewell PG, et al. Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol. 1997;30(4):997–1001.

    Article  CAS  PubMed  Google Scholar 

  49. •• Pereg D, Chan J, Russell E, Berlin T, Mosseri M, Seabrook JA et al. Cortisol and testosterone in hair as biological markers of systolic heart failure. Psychoneuroendocrinology. 2013. doi:10.1016/j.psyneuen.2013.07.015. This is a prospective study that evaluated hair cortisol levels in patients with heart failure. The results of this study showed that hair cortisol levels correlate with heart failure severity as assessed by exercise capacity (metabolic equivalents) and NYHA classes.

  50. Jankowska EA, Filippatos G, Ponikowska B, Borodulin-Nadzieja L, Anker SD, Banasiak W, et al. Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. Journal of cardiac failure. 2009;15(5):442–50. doi:10.1016/j.cardfail.2008.12.011.

    Article  CAS  PubMed  Google Scholar 

  51. Brotman DJ, Golden SH, Wittstein IS. The cardiovascular toll of stress. Lancet. 2007;370(9592):1089–100. doi:10.1016/S0140-6736(07)61305-1.

    Article  PubMed  Google Scholar 

  52. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22. doi:10.1007/s10741-005-2344-2.

    Article  CAS  PubMed  Google Scholar 

  53. Burniston JG, Saini A, Tan LB, Goldspink DF. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo. J Mol Cell Cardiol. 2005;39(2):395–9. doi:10.1016/j.yjmcc.2005.04.001.

    Article  CAS  PubMed  Google Scholar 

  54. Tomaschitz A, Ritz E, Pieske B, Fahrleitner-Pammer A, Kienreich K, Horina JH, et al. Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease. Cardiovascular research. 2012;94(1):10–9. doi:10.1093/cvr/cvs092.

    Article  CAS  PubMed  Google Scholar 

  55. Agapitou V, Dimopoulos S, Mpouchla A, Samartzis L, Tseliou E, Kaldara E, et al. Serum intact parathyroid hormone levels independently predict exercise capacity in stable heart failure patients. International journal of cardiology. 2011;146(3):462–4. doi:10.1016/j.ijcard.2010.10.123.

    Article  PubMed  Google Scholar 

  56. Schierbeck LL, Jensen TS, Bang U, Jensen G, Kober L, Jensen JE. Parathyroid hormone and vitamin D–markers for cardiovascular and all cause mortality in heart failure. European journal of heart failure. 2011;13(6):626–32. doi:10.1093/eurjhf/hfr016.

    Article  CAS  PubMed  Google Scholar 

  57. •• Agapitou V, Dimopoulos S, Kapelios C, Karatzanos E, Manetos C, Georgantas A, et al. Hormonal imbalance in relation to exercise intolerance and ventilatory inefficiency in chronic heart failure. J Heart Lung Transplant. 2013;32(4):431–6. doi:10.1016/j.healun.2012.12.011. This is a prospective study that demonstrates the anabolic deficiency and the enhanced catabolic status in heart failure and the association with exercise intolerance. The results of this study have shown that cortisol and dehydroepiandrosterone levels were both independent predictors of VO 2 peak, while cortisol was the only independent predictor of ventilatory inefficiency (Ve/Vco 2 slope).

    Article  PubMed  Google Scholar 

  58. Brillon DJ, Zheng B, Campbell RG, Matthews DE. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol. 1995;268(3 Pt 1):E501–13.

    CAS  PubMed  Google Scholar 

  59. Gore DC, Jahoor F, Wolfe RR, Herndon DN. Acute response of human muscle protein to catabolic hormones. Ann Surg. 1993;218(5):679–84.

    Article  CAS  PubMed  Google Scholar 

  60. Gelfand RA, Matthews DE, Bier DM, Sherwin RS. Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest. 1984;74(6):2238–48. doi:10.1172/JCI111650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Qi D, Rodrigues B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab. 2007;292(3):E654–67. doi:10.1152/ajpendo.00453.2006.

    Article  CAS  PubMed  Google Scholar 

  62. Simmons PS, Miles JM, Gerich JE, Haymond MW. Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest. 1984;73(2):412–20. doi:10.1172/JCI111227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Rossi R, Tauchmanova L, Luciano A, Di Martino M, Battista C, Del Viscovo L, et al. Subclinical Cushing's syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab. 2000;85(4):1440–8.

    CAS  PubMed  Google Scholar 

  64. Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):861–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29(5):1067–73.

    Article  CAS  PubMed  Google Scholar 

  66. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25(6):1239–49. doi:10.1016/0735-1097(94)00568-B.

    Article  CAS  PubMed  Google Scholar 

  67. • Erbs S, Hollriegel R, Linke A, Beck EB, Adams V, Gielen S, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3(4):486–94. doi:10.1161/CIRCHEARTFAILURE.109.868992. This is a randomized trial providing evidence of the beneficial effects of exercise training in patients with advanced heart failure. Exercise training improved LV function, exercise capacity, and peripheral circulation (endothelial function, and skeletal muscle neovascularization).

    Article  PubMed  Google Scholar 

  68. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. doi:10.1161/CIRCULATIONAHA.106.675041.

    Article  PubMed  Google Scholar 

  69. Gerovasili V, Drakos S, Kravari M, Malliaras K, Karatzanos E, Dimopoulos S, et al. Physical exercise improves the peripheral microcirculation of patients with chronic heart failure. Journal of cardiopulmonary rehabilitation and prevention. 2009;29(6):385–91. doi:10.1097/HCR.0b013e3181b4ca4e.

    Article  PubMed  Google Scholar 

  70. Tasoulis A, Papazachou O, Dimopoulos S, Gerovasili V, Karatzanos E, Kyprianou T, et al. Effects of interval exercise training on respiratory drive in patients with chronic heart failure. Respir Med. 2010;104(10):1557–65. doi:10.1016/j.rmed.2010.03.009.

    Article  PubMed  Google Scholar 

  71. Dimopoulos S, Anastasiou-Nana M, Sakellariou D, Drakos S, Kapsimalakou S, Maroulidis G, et al. Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2006;13(1):67–73.

    PubMed  Google Scholar 

  72. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, et al. Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12(4):401–6.

    Article  PubMed  Google Scholar 

  73. Anagnostakou V, Chatzimichail K, Dimopoulos S, Karatzanos E, Papazachou O, Tasoulis A, et al. Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. Journal of cardiac failure. 2011;17(7):585–91. doi:10.1016/j.cardfail.2011.02.009.

    Article  PubMed  Google Scholar 

  74. Bouchla A, Karatzanos E, Dimopoulos S, Tasoulis A, Agapitou V, Diakos N, et al. The addition of strength training to aerobic interval training: effects on muscle strength and body composition in CHF patients. Journal of cardiopulmonary rehabilitation and prevention. 2011;31(1):47–51. doi:10.1097/HCR.0b013e3181e174d7.

    Article  PubMed  Google Scholar 

  75. Tomczak CR, Paterson I, Haykowsky MJ, Lawrance R, Martellotto A, Pantano A, et al. Cardiac resynchronization therapy modulation of exercise left ventricular function and pulmonary O(2) uptake in heart failure. Am J Physiol Heart Circ Physiol. 2012;302(12):H2635–45. doi:10.1152/ajpheart.01119.2011.

    Article  CAS  PubMed  Google Scholar 

  76. De Marco T, Wolfel E, Feldman AM, Lowes B, Higginbotham MB, Ghali JK, et al. Impact of cardiac resynchronization therapy on exercise performance, functional capacity, and quality of life in systolic heart failure with QRS prolongation: COMPANION trial sub-study. Journal of cardiac failure. 2008;14(1):9–18. doi:10.1016/j.cardfail.2007.08.003.

    Article  PubMed  Google Scholar 

  77. Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med. 1998;339(21):1522–33. doi:10.1056/NEJM199811193392107.

    Article  CAS  PubMed  Google Scholar 

  78. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. doi:10.1056/NEJMoa012175.

    Article  CAS  PubMed  Google Scholar 

  79. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84. doi:10.1056/NEJMoa053063.

    Article  CAS  PubMed  Google Scholar 

  80. Lahpor J, Khaghani A, Hetzer R, Pavie A, Friedrich I, Sander K, et al. European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg. 2010;37(2):357–61. doi:10.1016/j.ejcts.2009.05.043.

    PubMed  Google Scholar 

  81. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. doi:10.1056/NEJMoa0909938.

    Article  CAS  PubMed  Google Scholar 

  82. Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol. 2007;43(3):231–42. doi:10.1016/j.yjmcc.2007.05.020.

    Article  CAS  PubMed  Google Scholar 

  83. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7. doi:10.1161/CIRCULATIONAHA.108.814863.

    Article  PubMed  Google Scholar 

  84. George I, Xydas S, Mancini DM, Lamanca J, DiTullio M, Marboe CC, et al. Effect of clenbuterol on cardiac and skeletal muscle function during left ventricular assist device support. J Heart Lung Transplant. 2006;25(9):1084–90. doi:10.1016/j.healun.2006.06.017.

    Article  PubMed  Google Scholar 

  85. • Dimopoulos SK, Drakos SG, Terrovitis JV, Tzanis GS, Nanas SN. Improvement in respiratory muscle dysfunction with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2010;29(8):906–8. doi:10.1016/j.healun.2010.03.013. This prospective study has demonstrated for the first time that left ventricular assist device implantation induces a significant improvement in respiratory muscle function of heart failure patients in parallel with exercise capacity as assessed with a VO 2 peak.

    Article  PubMed  Google Scholar 

  86. Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hanlein D, Willenbrock R, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet. 1998;351(9111):1233–7. doi:10.1016/S0140-6736(97)11329-0.

    Article  CAS  PubMed  Google Scholar 

  87. Acevedo M, Corbalan R, Chamorro G, Jalil J, Nazzal C, Campusano C, et al. Administration of growth hormone to patients with advanced cardiac heart failure: effects upon left ventricular function, exercise capacity, and neurohormonal status. International journal of cardiology. 2003;87(2–3):185–91.

    Article  PubMed  Google Scholar 

  88. Cittadini A, Saldamarco L, Marra AM, Arcopinto M, Carlomagno G, Imbriaco M, et al. Growth hormone deficiency in patients with chronic heart failure and beneficial effects of its correction. J Clin Endocrinol Metab. 2009;94(9):3329–36. doi:10.1210/jc.2009-0533.

    Article  CAS  PubMed  Google Scholar 

  89. Pugh PJ, Jones RD, West JN, Jones TH, Channer KS. Testosterone treatment for men with chronic heart failure. Heart. 2004;90(4):446–7.

    Article  CAS  PubMed  Google Scholar 

  90. Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27(1):57–64. doi:10.1093/eurheartj/ehi443.

    Article  CAS  PubMed  Google Scholar 

  91. Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54(10):919–27. doi:10.1016/j.jacc.2009.04.078.

    Article  CAS  PubMed  Google Scholar 

  92. • Iellamo F, Volterrani M, Caminiti G, Karam R, Massaro R, Fini M, et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol. 2010;56(16):1310–6. doi:10.1016/j.jacc.2010.03.090. This is a double blind randomized control trial that investigated the role of testosterone supplementation in females with heart failure and showed an improvement in exercise capacity, insulin resistance and muscle strength.

    Article  CAS  PubMed  Google Scholar 

  93. • Stout M, Tew GA, Doll H, Zwierska I, Woodroofe N, Channer KS, et al. Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am Heart J. 2012;164(6):893–901. doi:10.1016/j.ahj.2012.09.016. This novel double blind randomized control trial investigated the role of testosterone supplementation and exercise training in male patients with hearing and testosterone deficiency. The study showed that testosterone supplementation alongside exercise training improved exercise capacity, muscle strength and quality of life.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Georgios Tzanis, Stavros Dimopoulos, Varvara Agapitou, and Serafim Nanas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Dimopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzanis, G., Dimopoulos, S., Agapitou, V. et al. Exercise Intolerance in Chronic Heart Failure: The Role of Cortisol and the Catabolic State. Curr Heart Fail Rep 11, 70–79 (2014). https://doi.org/10.1007/s11897-013-0177-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0177-1

Keywords

Navigation