Skip to main content

Advertisement

Log in

Heart Failure with Preserved Ejection Fraction: Current Understandings and Challenges

  • New Therapies for Cardiovascular Disease (KW Mahaffey, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is the leading cause of hospitalization among older adults and the prevalence is growing with the aging populations in western countries. Approximately one-half of patients with HF have preserved ejection fraction (HFpEF). In contrast to HF with reduced EF (HFrEF), there is no proven effective treatment for HFpEF. The pathophysiology of HFpEF is complex, and the dominant mechanisms leading to symptoms of HF often vary between afflicted patients, confounding efforts to apply “one-size fits all” types of therapeutic approaches. Current treatment strategies focus on control of volume status and comorbidities, but future research aimed at individualized therapies holds promise to improve outcomes in this increasingly prevalent form of cardiac failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart Disease and Stroke Statistics—2014 Update: a report from the American Heart Association. Circulation. 2013. doi:10.1161/01.cir.0000441139.02102.80.

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9. doi:10.1056/NEJMoa052256.

    CAS  PubMed  Google Scholar 

  3. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32:670–9. doi:10.1093/eurheartj/ehq426.

    PubMed Central  PubMed  Google Scholar 

  4. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9.

    CAS  PubMed  Google Scholar 

  5. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:1810–52. doi:10.1161/CIR.0b013e31829e8807.

    PubMed  Google Scholar 

  6. Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:776–85. doi:10.1093/eurjhf/hft026. This study shows for the first time that the increase in cardiac output relative to metabolic demand is impaired in patients with HFpEF.

    PubMed Central  PubMed  Google Scholar 

  7. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure With preserved or reduced ejection fraction: insights from the Framingham Heart Study of the National Heart, Lung, and Blood Institute. Circulation. 2009;119:3070–7. doi:10.1161/circulationaha.108.815944.

    PubMed Central  PubMed  Google Scholar 

  8. Shah SJ, Heitner JF, Sweitzer NK, Anand IS, Kim HY, Harty B, et al. Baseline characteristics of patients in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2013;6:184–92. doi:10.1161/CIRCHEARTFAILURE.112.972794.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hwang S, Melenovsky V, Borlaug B. Implications of coronary artery disease in heart failure with preserved ejection fraction (in revision). J Am Coll Cardiol. 2014 Apr 11. pii: S0735-1097(14)02000-2. This study shows for the first time that coronary artery disease increases risk of death in HFpEF and suggests that revascularization may be beneficial in this population.

  10. Brubaker PH, Joo KC, Stewart KP, Fray B, Moore B, Kitzman DW. Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. J Cardiopulm Rehab. 2006;26:86–9.

    Google Scholar 

  11. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54. This paper shows how limitations in exercise capacity in HFpEF are due to multiple different domains of cardiovascular reserve dysfunction and is the first demonstration of the importance of endothelial dysfunction in HFpEF.

    PubMed Central  PubMed  Google Scholar 

  12. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–47. doi:10.1161/CIRCULATIONAHA.106.632745.

    PubMed  Google Scholar 

  13. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;54:410–8.

    PubMed Central  PubMed  Google Scholar 

  14. Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County. Minn Circulat. 2007;115:1982–90. doi:10.1161/CIRCULATIONAHA.106.659763.

    Google Scholar 

  15. Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54:402–9. doi:10.1016/j.jacc.2009.05.012. This paper shows how abnormal ventricular reserve may be related to reduced energetic availability.

    PubMed  Google Scholar 

  16. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74. doi:10.1016/j.jacc.2011.02.055. This paper shows how abnormalities in the periphery (skeletal muscle, vasculature) also may contribute to functional limitation in HFpEF.

    PubMed Central  PubMed  Google Scholar 

  17. Prasad A, Hastings J, Shibata S, Popovic ZB, Arbab-Zadeh A, Bhella PS, et al. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure and a preserved ejection fraction. Circ Heart Fail. 2010:3:617–26.

  18. Lee AP, Song JK, Yip GW, Zhang Q, Zhu TG, Li C, et al. Importance of dynamic dyssynchrony in the occurrence of hypertensive heart failure with normal ejection fraction. Eur Heart J. 2010;31:2642–9. doi:10.1093/eurheartj/ehq248.

    PubMed  Google Scholar 

  19. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304. doi:10.1093/eurjhf/hfr133.

    PubMed Central  PubMed  Google Scholar 

  20. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9. doi:10.1056/NEJMoa032566 350/19/1953.

    CAS  PubMed  Google Scholar 

  21. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17:1065–72.

    CAS  PubMed  Google Scholar 

  22. Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in Heart Failure with preserved Ejection Fraction. Eur Heart J. 2014; in press.

  23. Borlaug BA, Jaber WA, Ommen SR, Lam CS, Redfield MM, Nishimura RA. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart. 2011;97:964–9. doi:10.1136/hrt.2010.212787.

    PubMed Central  PubMed  Google Scholar 

  24. Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, Fox J, et al. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2013:7:288–99. doi:10.1161/CIRCHEARTFAILURE.113.000854. This paper shows how impaired LV diastolic function and RV hypertrophy independently predict increased risk of death in HFpEF.

  25. Borlaug BA, Redfield MM, Melenovsky V, Kane GC, Karon BL, Jacobsen SJ, et al. Longitudinal changes in left ventricular stiffness: a community-based study. Circ Heart Fail. 2013;6:944–52. doi:10.1161/CIRCHEARTFAILURE.113.000383. This paper shows that despite excellent control of arterial hypertension, LV stiffness increases as part of normal aging over just 4 years in patients with and without cardiovascular disease.

    PubMed  Google Scholar 

  26. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett Jr JC, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306:856–63. doi:10.1001/jama.2011.1201. This paper shows the age-associated change in diastolic function and how this predicts greater risk for developing heart failure.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R, Aurigemma G, et al. Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group. Cardiovasc Health Study Am J Cardiol. 2001;87:413–9.

    CAS  Google Scholar 

  28. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation. 2011;123:2006–13. doi:10.1161/CIRCULATIONAHA.110.954388. discussion 14.

    PubMed Central  PubMed  Google Scholar 

  29. Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, et al. Incidence and epidemiology of new onset heart failure with preserved vs reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J. 2013;34:1424–31. doi:10.1093/eurheartj/eht066.

    CAS  PubMed  Google Scholar 

  30. Scantlebury DC, Borlaug BA. Why are women more likely than men to develop heart failure with preserved ejection fraction? Curr Opin Cardiol. 2011;26:562–8. doi:10.1097/HCO.0b013e32834b7faf.

    PubMed  Google Scholar 

  31. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42:563–70. doi:10.1016/j.amepre.2011.10.026.

    PubMed  Google Scholar 

  32. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity. 2008;16:2323–30. doi:10.1038/oby.2008.351.

    PubMed  Google Scholar 

  33. Luepker RV, Steffen LM, Jacobs Jr DR, Zhou X, Blackburn H. Trends in blood pressure and hypertension detection, treatment, and control 1980 to 2009: the Minnesota Heart Survey. Circulation. 2012;126:1852–7. doi:10.1161/CIRCULATIONAHA.112.098517.

    PubMed Central  PubMed  Google Scholar 

  34. McDonald M, Hertz RP, Unger AN, Lustik MB. Prevalence, awareness, and management of hypertension, dyslipidemia, and diabetes among United States adults aged 65 and older. J Gerontol A Biol Sci Med Sci. 2009;64:256–63. doi:10.1093/gerona/gln016.

    PubMed  Google Scholar 

  35. Piccini JP, Hammill BG, Sinner MF, Jensen PN, Hernandez AF, Heckbert SR, et al. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. Circ Cardiovasc Qual Outcomes. 2012;5:85–93. doi:10.1161/CIRCOUTCOMES.111.962688.

    PubMed Central  PubMed  Google Scholar 

  36. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6. doi:10.1161/01.CIR.0000140263.20897.42.

    PubMed  Google Scholar 

  37. Fujimoto N, Prasad A, Hastings JL, Arbab-Zadeh A, Bhella PS, Shibata S, et al. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation. 2010;122:1797–805. doi:10.1161/CIRCULATIONAHA.110.973784.

    PubMed Central  PubMed  Google Scholar 

  38. Arbab-Zadeh A, Dijk E, Prasad A, Fu Q, Torres P, Zhang R, et al. Effect of aging and physical activity on left ventricular compliance. Circulation. 2004;110:1799–805. doi:10.1161/01.CIR.0000142863.71285.74.

    PubMed  Google Scholar 

  39. Borlaug BA. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ J. 2013;78:20–32.

    PubMed  Google Scholar 

  40. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124:2491–501. doi:10.1161/CIRCULATIONAHA.110.011031.

    PubMed  Google Scholar 

  41. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O'Meara E, Heitner JF, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2014;7:104–15. doi:10.1161/CIRCHEARTFAILURE.113.000887.

    CAS  PubMed  Google Scholar 

  42. Persson H, Lonn E, Edner M, Baruch L, Lang CC, Morton JJ, et al. Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol. 2007;49:687–94. doi:10.1016/j.jacc.2006.08.062.

    PubMed  Google Scholar 

  43. Borlaug BA, Kass DA. Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc Med. 2006;16:273–9. doi:10.1016/j.tcm.2006.05.003.

    PubMed  Google Scholar 

  44. Opdahl A, Remme EW, Helle-Valle T, Lyseggen E, Vartdal T, Pettersen E, et al. Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation. 2009;119:2578–86.

    PubMed  Google Scholar 

  45. Cheng CP, Igarashi Y, Little WC. Mechanism of augmented rate of left ventricular filling during exercise. Circ Res. 1992;70:9–19.

    CAS  PubMed  Google Scholar 

  46. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54:36–46. doi:10.1016/j.jacc.2009.03.037. This paper shows the complex nature of systolic and diastolic limitation during exercise in HFpEF.

    PubMed  Google Scholar 

  47. Wachter R, Schmidt-Schweda S, Westermann D, Post H, Edelmann F, Kasner M, et al. Blunted frequency-dependent upregulation of cardiac output is related to impaired relaxation in diastolic heart failure. Eur Heart J. 2009;30:3027–36. doi:10.1093/eurheartj/ehp341.

    PubMed Central  PubMed  Google Scholar 

  48. Ohara T, Niebel CL, Stewart KC, Charonko JJ, Pu M, Vlachos PP, et al. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: evaluation by color M-mode echocardiography. JACC Cardiovasc Imaging. 2012;5:861–70. doi:10.1016/j.jcmg.2012.05.013.

    PubMed  Google Scholar 

  49. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95. doi:10.1161/CIRCHEARTFAILURE.109.930701. This paper shows the value of exercise hemodynamic assessment to diagnose or exclude HFpEF in patients with unexplained dyspnea.

    PubMed Central  PubMed  Google Scholar 

  50. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008;117:2051–60. doi:10.1161/CIRCULATIONAHA.107.716886.

    PubMed  Google Scholar 

  51. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–81. doi:10.1161/01.CIR.0000155257.33485.6D.

    PubMed  Google Scholar 

  52. van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–73. doi:10.1161/CIRCULATIONAHA.105.587519.

    PubMed  Google Scholar 

  53. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263––71. doi:10.1016/j.jacc.2013.02.092. This is an opinion piece setting forward compelling evidence that HFpEF is fundamentally caused by metabolic abnormalities induced by obesity, hypertension, and sedentary lifestyle that lead to increased oxidative/nitrosative stress.

    PubMed  Google Scholar 

  54. Selby DE, Palmer BM, LeWinter MM, Meyer M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol. 2011;58:147–54. doi:10.1016/j.jacc.2010.10.069.

    PubMed Central  PubMed  Google Scholar 

  55. van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9. doi:10.1161/CIRCULATIONAHA.111.076075. Using human cardiomyocytes, the authors show how increased myofiber stiffness is related to increased oxidative stress and impaired cGMP bioavailability.

    PubMed  Google Scholar 

  56. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Failure. 2010:4:44–52.

  57. Brucks S, Little WC, Chao T, Kitzman DW, Wesley-Farrington D, Gandhi S, et al. Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am J Cardiol. 2005;95:603–6. doi:10.1016/j.amjcard.2004.11.006.

    PubMed  Google Scholar 

  58. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013:63:447–456. doi:10.1016/j.jacc.2013.09.052.

  59. Shibata S, Hastings JL, Prasad A, Fu Q, Bhella PS, Pacini E, et al. Congestive heart failure with preserved ejection fraction is associated with severely impaired dynamic Starling mechanism. J Appl Physiol. 2011;110:964–71. doi:10.1152/japplphysiol.00826.2010.

    PubMed Central  PubMed  Google Scholar 

  60. Ennezat PV, Lefetz Y, Marechaux S, Six-Carpentier M, Deklunder G, Montaigne D, et al. Left ventricular abnormal response during dynamic exercise in patients with heart failure and preserved left ventricular ejection fraction at rest. J Card Fail. 2008;14:475–80. doi:10.1016/j.cardfail.2008.02.012.

    PubMed  Google Scholar 

  61. Maeder MT, Thompson BR, Brunner-La Rocca H-P, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56:855–63. Invasive hemodynamic study in HFpEF showing key role of impaired stroke volume reserve with exercise This study also performed echocardiography and found that while PCWP rose dramatically, its noninvasive echo marker (E/e' ratio) did not, suggesting that this may not be as robust a marker as previously thought.

    PubMed  Google Scholar 

  62. Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol. 2013;62:1660–70. doi:10.1016/j.jacc.2013.06.046.

    PubMed  Google Scholar 

  63. Tartiere-Kesri L, Tartiere JM, Logeart D, Beauvais F, Cohen Solal A. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;59:455–61. doi:10.1016/j.jacc.2011.10.873. Exercise study reveals the importance of increased arterial stiffness in limiting cardiovascular reserve in HFpEF.

    PubMed  Google Scholar 

  64. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    PubMed  Google Scholar 

  65. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Cardiol Clin. 2011;29:447–59. doi:10.1016/j.ccl.2011.06.004.

    PubMed  Google Scholar 

  66. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012;59:442–51. doi:10.1016/j.jacc.2011.09.062. This study highlights important differences between HFpEF and HFrEF in the acute response to vasodilators that have important implications in everyday care of patients.

    PubMed  Google Scholar 

  67. Santos AB, Kraigher-Krainer E, Bello N, Claggett B, Zile MR, Pieske B, et al. Left ventricular dyssynchrony in patients with heart failure and preserved ejection fraction. Eur Heart J. 2014;35:42–7. doi:10.1093/eurheartj/eht427.

    CAS  PubMed  Google Scholar 

  68. From AM, Lam CS, Pitta SR, Kumar PV, Balbissi KA, Booker JD, et al. Bedside assessment of cardiac hemodynamics: the impact of noninvasive testing and examiner experience. Am J Med. 2011;124:1051–7. doi:10.1016/j.amjmed.2011.05.034.

    PubMed  Google Scholar 

  69. Little WC, Oh JK. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation. 2009;120:802–9. doi:10.1161/CIRCULATIONAHA.109.869602.

    PubMed  Google Scholar 

  70. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50. doi:10.1093/eurheartj/ehm037.

    PubMed  Google Scholar 

  71. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.

    CAS  PubMed  Google Scholar 

  72. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    CAS  PubMed  Google Scholar 

  73. Nagueh SF. Noninvasive evaluation of hemodynamics by Doppler echocardiography. Curr Opin Cardiol. 1999;14:217–24.

    CAS  PubMed  Google Scholar 

  74. Andersen MJ, Ersboll M, Gustafsson F, Axelsson A, Hassager C, Kober L, et al. Exercise-induced changes in left ventricular filling pressure after myocardial infarction assessed with simultaneous right heart catheterization and Doppler echocardiography. Int J Cardiol. 2013:168:2803–2810. doi:10.1016/j.ijcard.2013.03.122.

  75. Bhella PS, Pacini EL, Prasad A, Hastings JL, Adams-Huet B, Thomas JD, et al. Echocardiographic indices do not reliably track changes in left-sided filling pressure in healthy subjects or patients with heart failure with preserved ejection fraction. Circ Cardiovasc Imaging. 2011;4:482–9. doi:10.1161/CIRCIMAGING.110.960575. In this study, echocardiography was performed during catheterization. Despite marked variation in PCWP, there was little change in E/e', raising questions with this marker of filling pressures.

    PubMed Central  PubMed  Google Scholar 

  76. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation. 2009;119:62–70.

    PubMed Central  PubMed  Google Scholar 

  77. Melenovsky V, Borlaug B, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction vs nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49:198–207.

    PubMed  Google Scholar 

  78. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26. doi:10.1016/j.jacc.2008.11.051. This is a seminal paper first showing how common pulmonary hypertension is in HFpEF and how it predicts increased mortality.

    PubMed Central  PubMed  Google Scholar 

  79. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47:742–8. doi:10.1016/j.jacc.2005.11.030.

    CAS  PubMed  Google Scholar 

  80. Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62. doi:10.1161/CIRCULATIONAHA.112.111302. This paper describes how acute saline loading can be helpful in the catheter lab to diagnose HFpEF.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Robbins IM, Hemnes AR, Pugh ME, Brittain EL, Zhao DX, Piana RN, et al. High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail. 2014;7:116–22. doi:10.1161/CIRCHEARTFAILURE.113.000468.

    PubMed  Google Scholar 

  82. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77. doi:10.1001/jama.2013.2024.

    CAS  PubMed  Google Scholar 

  83. Pfeffer MA, McKinlay S, Pitt B, Investigators: Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) AHA Scientific Sessions: Dallas; 2013.

  84. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91. doi:10.1001/jama.2013.905.

    CAS  PubMed  Google Scholar 

  85. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67. doi:10.1056/NEJMoa0805450.

    CAS  PubMed  Google Scholar 

  86. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81. doi:10.1016/S0140-6736(03)14285-7.

    CAS  PubMed  Google Scholar 

  87. Ahmed A, Rich MW, Fleg JL, Zile MR, Young JB, Kitzman DW, et al. Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation. 2006;114:397–403. doi:10.1161/CIRCULATIONAHA.106.628347.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45. doi:10.1093/eurheartj/ehl250.

    CAS  PubMed  Google Scholar 

  89. van Veldhuisen DJ, Cohen-Solal A, Bohm M, Anker SD, Babalis D, Roughton M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009;53:2150–8. doi:10.1016/j.jacc.2009.02.046.

    PubMed  Google Scholar 

  90. McMurray JJ, Carson PE, Komajda M, McKelvie R, Zile MR, Ptaszynska A, et al. Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail. 2008;10:149–56. doi:10.1016/j.ejheart.2007.12.010.

    PubMed  Google Scholar 

  91. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118:2259–67. doi:10.1161/CIRCULATIONAHA.107.762229.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98. doi:10.1056/NEJMoa0801369.

    CAS  PubMed  Google Scholar 

  93. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7. doi:10.1016/j.jacc.2007.07.032.

    PubMed  Google Scholar 

  94. Solomon SD, Janardhanan R, Verma A, Bourgoun M, Daley WL, Purkayastha D, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomized trial. Lancet. 2007;369:2079–87. doi:10.1016/S0140-6736(07)60980-5.

    CAS  PubMed  Google Scholar 

  95. Ghio S, Magrini G, Serio A, Klersy C, Fucili A, Ronaszeki A, et al. Effects of nebivolol in elderly heart failure patients with or without systolic left ventricular dysfunction: results of the SENIORS echocardiographic substudy. Eur Heart J. 2006;27:562–8. doi:10.1093/eurheartj/ehi735.

    CAS  PubMed  Google Scholar 

  96. Hernandez AF, Hammill BG, O'Connor CM, Schulman KA, Curtis LH, Fonarow GC. Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) Registry. J Am Coll Cardiol. 2009;53:184–92. doi:10.1016/j.jacc.2008.09.031.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Redfield MM, Borlaug BA, Lewis GD, Mohammed SF, Semigran MJ, Lewinter MM, et al. PhosphdiesteRasE-5 Inhibition to Improve CLinical Status and eXercise Capacity in Diastolic Heart Failure (RELAX) trial: rationale and design. Circ Heart Fail. 2012;5:653–9. doi:10.1161/CIRCHEARTFAILURE.112.969071.

    PubMed Central  PubMed  Google Scholar 

  98. Kitzman DW, Hundley WG, Brubaker PH, Morgan TM, Moore JB, Stewart KP, et al. A randomized double-blind trial of enalapril in older patients with heart failure and preserved ejection fraction: effects on exercise tolerance and arterial distensibility. Circ Heart Fail. 2010;3:477–85. This is the first randomized trial of exercise training in HFpEF and showed significant improvements in exercise capacity and quality of life.

    PubMed Central  PubMed  Google Scholar 

  99. Edelmann F, Gelbrich G, Dungen HD, Frohling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol. 2011;58:1780–91. doi:10.1016/j.jacc.2011.06.054. This is another trial of exercise training in HFpEF and in addition to improved aerobic capacity, the authors noted improvements in echo-Doppler estimates of diastolic function, suggesting a direct myocardial effect from training.

    PubMed  Google Scholar 

  100. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60:120–8. doi:10.1016/j.jacc.2012.02.055.

    PubMed Central  PubMed  Google Scholar 

  101. Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6:1165–71. doi:10.1161/CIRCHEARTFAILURE.113.000481. This small, noncontrolled study observed significant improvements in cardiac function with salt restriction as part of the DASH diet.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved vs reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005. doi:10.1016/j.jacc.2011.11.040. This paper highlights the importance of comorbidities in patients with HFpEF in a predominantly male VA population.

    PubMed  Google Scholar 

  103. Shah SJ, Gheorghiade M. Heart failure with preserved ejection fraction: treat now by treating comorbidities. JAMA. 2008;300:431–3. doi:10.1001/jama.300.4.431.

    CAS  PubMed  Google Scholar 

  104. Zakeri R, Chamberlain AM, Roger VL, Redfield MM. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation. 2013;128:1085–93. doi:10.1161/CIRCULATIONAHA.113.001475. This paper shows that atrial fibrillation is incredibly prevalent in HFpEF and increases risk of death in this group.

    PubMed Central  PubMed  Google Scholar 

  105. Zakeri R, Borlaug BA, McNulty S, Mohammed SF, Lewis GD, Semigran MJ, et al. Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circ Heart Fail. 2014 Jan;7(1):123–30. doi:10.1161/CIRCHEARTFAILURE.113.000568. This study shows how atrial fibrillation is associated with more severe exercise limitation in people with HFpEF.

  106. Olsson LG, Swedberg K, Ducharme A, Granger CB, Michelson EL, McMurray JJ, et al. Atrial fibrillation and risk of clinical events in chronic heart failure with and without left ventricular systolic dysfunction: results from the Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity (CHARM) program. J Am Coll Cardiol. 2006;47:1997–2004. doi:10.1016/j.jacc.2006.01.060.

    PubMed  Google Scholar 

  107. Mentz RJ, Broderick S, Shaw LK, Fiuzat M, O'Connor CM. Heart failure with preserved ejection fraction: comparison of patients with and without angina pectoris (from the duke databank for cardiovascular disease). J Am Coll Cardiol. 2014;63:251–8. doi:10.1016/j.jacc.2013.09.039.

    PubMed  Google Scholar 

  108. Tribouilloy C, Rusinaru D, Mahjoub H, Souliere V, Levy F, Peltier M, et al. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur Heart J. 2008;29:339–47. doi:10.1093/eurheartj/ehm554.

    PubMed  Google Scholar 

  109. Choudhury L, Gheorghiade M, Bonow RO. Coronary artery disease in patients with heart failure and preserved systolic function. Am J Cardiol. 2002;89:719–22.

    PubMed  Google Scholar 

  110. Kass DA, Midei M, Brinker J, Maughan WL. Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure-volume relations in humans. Circulation. 1990;81:447–60.

    CAS  PubMed  Google Scholar 

  111. von Haehling S, van Veldhuisen DJ, Roughton M, Babalis D, de Boer RA, Coats AJ, et al. Anemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS study. Eur J Heart Fail. 2011;13:656–63. doi:10.1093/eurjhf/hfr044.

    Google Scholar 

  112. Maurer MS, Teruya S, Chakraborty B, Helmke S, Mancini D. Treating anemia in older adults with heart failure with a preserved ejection fraction with epoetin alfa: single-blind randomized clinical trial of safety and efficacy. Circ Heart Fail. 2013;6:254–63. doi:10.1161/CIRCHEARTFAILURE.112.969717. This small randomized trial tested epoetin alfa in anemic patients with HFpEF.

    PubMed Central  PubMed  Google Scholar 

  113. Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP. The breathing heart—mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol. 2014;171:134–43. doi:10.1016/j.ijcard.2013.12.014.

    PubMed  Google Scholar 

  114. Beadle RM, Frenneaux M. Modification of myocardial substrate utilization: a new therapeutic paradigm in cardiovascular disease. Heart. 2010;96:824–30. doi:10.1136/hrt.2009.190256. This interesting article deals with the therapeutic potential for altering myocardial metabolism as a novel approach to treat heart failure.

    CAS  PubMed  Google Scholar 

  115. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39. doi:10.1016/j.cell.2013.04.015. This is a basic science paper using a novel parabiosis technique to identify a new molecule involved in maintaining ventricular "youth" and preventing hypertrophic remodeling.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Willis MS, Patterson C. Proteotoxicity and cardiac dysfunction—Alzheimer’s disease of the heart? N Engl J Med. 2013;368:455–64. doi:10.1056/NEJMra1106180.

    CAS  PubMed  Google Scholar 

  117. Haykowsky MJ, Brubaker PH, Morgan TM, Kritchevsky S, Eggebeen J, Kitzman DW. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J Gerontol A Biol Sci Med Sci. 2013;68:968–75. doi:10.1093/gerona/glt011.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mads J. Andersen declares that he has no conflict of interest. Barry A. Borlaug reports personal fees from Amgen, personal fees from GlaxoSmithKline, grants from Atcor Medical, personal fees from Medscape, personal fees from Merck, and grants from Gilead. In addition, Barry A. Borlaug has provisional patent applications pending, application #61/776,783 filed Mar 11, 2013, and application #61/798,382 filed Mar 15, 2013, pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Borlaug.

Additional information

This article is part of the Topical Collection on New Therapies for Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, M.J., Borlaug, B.A. Heart Failure with Preserved Ejection Fraction: Current Understandings and Challenges. Curr Cardiol Rep 16, 501 (2014). https://doi.org/10.1007/s11886-014-0501-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0501-8

Keywords

Navigation