Skip to main content
Log in

The Influence of Insulin Resistance, Obesity, and Diabetes Mellitus on Vascular Tone and Myocardial Blood Flow

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Among individuals with cardiovascular risk factors, reductions in coronary vasodilator capacity with or without diabetes mellitus (DM) carry important diagnostic and prognostic information. Positron emission tomography (PET) myocardial perfusion imaging in concert with tracer kinetic modeling allows the assessment of absolute regional myocardial blood flow (MBF) at rest and its response to various forms of vasomotor stress. Such noninvasive evaluation of myocardial flow reserve (MFR) or the vasodilator capacity of the coronary circulation expands the possibilities of conventional scintigraphic myocardial perfusion imaging from identifying flow-limiting epicardial coronary artery lesions to understanding the underlying pathophysiology of diabetic vasculopathy, microcirculatory dysfunction, and its atherothrombotic sequelae. Invaluable mechanistic insights were recently reported with PET by unraveling important effects of insulin resistance, obesity, and DM on the function of the coronary circulation. Such noninvasive assessment of coronary circulatory dysfunction enables monitoring its response to antidiabetic medication and/or behavioral interventions related to weight, diet, and physical activity that may evolve as a promising tool for an image-guided and personalized preventive diabetic vascular care. Whether PET-guided improvement or normalization of hyperemic MBF and/or MFR will translate into improved patient outcome in DM is a laudable goal to pursue next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303:235–41.

    Article  PubMed  CAS  Google Scholar 

  2. Fox KA, Despres JP, Richard AJ, et al. Does abdominal obesity have a similar impact on cardiovascular disease and diabetes? A study of 91,246 ambulant patients in 27 European countries. Eur Heart J. 2009;30:3055–63.

    Article  PubMed  Google Scholar 

  3. Eckel RH, Wassef M, Chait A, et al. Prevention Conference VI: Diabetes and Cardiovascular Disease: Writing Group II: pathogenesis of atherosclerosis in diabetes. Circulation. 2002;105:e138–43.

    Article  PubMed  Google Scholar 

  4. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111:363–8.

    Article  PubMed  Google Scholar 

  5. Nitenberg A, Valensi P, Sachs R, et al. Prognostic value of epicardial coronary artery constriction to the cold pressor test in type 2 diabetic patients with angiographically normal coronary arteries and no other major coronary risk factors. Diabetes Care. 2004;27:208–15.

    Article  PubMed  Google Scholar 

  6. Nitenberg A, Pham I, Antony I, et al. Cardiovascular outcome of patients with abnormal coronary vasomotion and normal coronary arteriography is worse in type 2 diabetes mellitus than in arterial hypertension: a 10 year follow-up study. Atherosclerosis. 2005;183:113–20.

    Article  PubMed  CAS  Google Scholar 

  7. Schindler TH, Nitzsche EU, Schelbert HR, et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol. 2005;45:1505–12.

    Article  PubMed  Google Scholar 

  8. •• Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6. This is a retrospectively performed study in 245 patients with suspicion for CAD. In patients with normal PET perfusion imaging the evaluation of the MFR proved to be a strong outcome predictors, whereas a reduced MFR in those with stress-induced perfusion defects improved the prediction of an adverse outcome.

    Article  PubMed  Google Scholar 

  9. •• Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740-8. This study enrolled prospectively 704 patients with suspected and known CAD who underwent 82Rb PET perfusion measurements and MFR calculation. The noninvasively calculated MFR predicted hard cardiac events and major adverse cardiac events independent of the presence of stress-induced myocardial perfusion defects and other parameters.

    Article  PubMed  Google Scholar 

  10. Schindler TH, Zhang XL, Vincenti G, et al. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol. 2007;14:589–603.

    Article  PubMed  Google Scholar 

  11. Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis. 1997;39:287–324.

    Article  PubMed  CAS  Google Scholar 

  12. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–22.

    PubMed  CAS  Google Scholar 

  13. Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care. 1998;21:518–24.

    Article  PubMed  CAS  Google Scholar 

  14. Tan KC, Ai VH, Chow WS, et al. Influence of low density lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium-dependent and independent vasodilation in patients with type 2 diabetes. J Clin Endocrinol Metab. 1999;84:3212–6.

    Article  PubMed  CAS  Google Scholar 

  15. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    PubMed  CAS  Google Scholar 

  16. Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes–part I: pathways of vascular disease in diabetes. Vascul Pharmacol. 2011;54:68–74.

    Article  PubMed  CAS  Google Scholar 

  17. • Schindler TH, Schelbert HR, Quercioli A, et al. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623-40. This review provides an excellent update on clinical and research possibilities of noninvasive MBF quantification with PET.

    Article  PubMed  Google Scholar 

  18. Rubinshtein R, Kuvin JT, Soffler M, et al. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J. 2011;31:1142–8.

    Article  Google Scholar 

  19. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.

    Article  PubMed  CAS  Google Scholar 

  20. Scholtens AM, Tio RA, Willemsen A, et al. Myocardial perfusion reserve compared with peripheral perfusion reserve: a [13 N]ammonia PET study. J Nucl Cardiol. 2010;18:238–46.

    Article  Google Scholar 

  21. Bottcher M, Madsen MM, Refsgaard J, et al. Peripheral flow response to transient arterial forearm occlusion does not reflect myocardial perfusion reserve. Circulation. 2001;103:1109–14.

    PubMed  CAS  Google Scholar 

  22. Valenta I, Landmesser U, Schindler TH. Vascular function of the peripheral and coronary circulation: worthwhile to assess their relation? J Nucl Cardiol. 2010;18:201–3.

    Article  Google Scholar 

  23. Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol. 2010;17:545–54.

    Article  PubMed  Google Scholar 

  24. Schindler TH, Nitzsche EU, Olschewski M, et al. PET-Measured Responses of MBF to Cold Pressor Testing Correlate with Indices of Coronary Vasomotion on Quantitative Coronary Angiography. J Nucl Med. 2004;45:419–28.

    PubMed  Google Scholar 

  25. Buus NH, Bottcher M, Hermansen F, et al. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation. 2001;104:2305–10.

    Article  PubMed  CAS  Google Scholar 

  26. Tawakol A, Forgione MA, Stuehlinger M, et al. Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol. 2002;40:1051–8.

    Article  PubMed  CAS  Google Scholar 

  27. Schelbert HR. Coronary circulatory function abnormalities in insulin resistance: insights from positron emission tomography. J Am Coll Cardiol. 2009;53:S3–8.

    Article  PubMed  CAS  Google Scholar 

  28. Cavalcante JL, Tamarappoo B, Hachamovitch R. Assessing risk and predicting Outcomes in coronary artery disease: physiology, anatomy, or biology? Curr Cardiovasc Imaging Rep. 2011;4:180–9.

    Article  Google Scholar 

  29. Grundy SM, Brewer Jr HB, Cleeman JI, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.

    Article  PubMed  Google Scholar 

  30. Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2011;56:1113–32.

    Article  Google Scholar 

  31. Eckel RH, Daniels SR, Jacobs AK, et al. America’s children: a critical time for prevention. Circulation. 2005;111:1866–8.

    Article  PubMed  Google Scholar 

  32. Schindler TH, Cardenas J, Prior JO, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47:1188–95.

    Article  PubMed  CAS  Google Scholar 

  33. Steinberg HO, Chaker H, Leaming R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.

    Article  PubMed  CAS  Google Scholar 

  34. Al Suwaidi J, Higano ST, Holmes Jr DR, et al. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol. 2001;37:1523–8.

    Article  PubMed  Google Scholar 

  35. Motivala AA, Rose PA, Kim HM, et al. Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol. 2008;15:510–7.

    Article  PubMed  Google Scholar 

  36. Schindler TH, Nitzsche EU, Olschewski M, et al. Chronic inflammation and impaired coronary vasoreactivity in patients with coronary risk factors. Circulation. 2004;110:1069–75.

    Article  PubMed  Google Scholar 

  37. • Vaccarino V, Khan D, Votaw J, et al. Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins. J Am Coll Cardiol. 2011;57:1271-9. This study highlights the association between coronary microvascular dysfunction and a systemic microinflammation independent of CAD risk factors.

    Article  PubMed  Google Scholar 

  38. Contreras C, Sanchez A, Garcia-Sacristan A, et al. Preserved insulin vasorelaxation and up-regulation of the Akt/eNOS pathway in coronary arteries from insulin resistant obese Zucker rats. Atherosclerosis. 2011;217:331–9.

    Article  PubMed  CAS  Google Scholar 

  39. Sundell J, Nuutila P, Laine H, et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes. 2002;51:1125–30.

    Article  PubMed  CAS  Google Scholar 

  40. Iozzo P, Chareonthaitawee P, Di Terlizzi M, et al. Regional myocardial blood flow and glucose utilization during fasting and physiological hyperinsulinemia in humans. Am J Physiol Endocrinol Metab. 2002;282:E1163–71.

    PubMed  CAS  Google Scholar 

  41. Sundell J, Laine H, Nuutila P, et al. The effects of insulin and short-term hyperglycaemia on myocardial blood flow in young men with uncomplicated Type I diabetes. Diabetologia. 2002;45:775–82.

    Article  PubMed  CAS  Google Scholar 

  42. Lautamaki R, Airaksinen KE, Seppanen M, et al. Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes. 2006;55:511–6.

    Article  PubMed  CAS  Google Scholar 

  43. Quinones MJ, Hernandez-Pampaloni M, Schelbert H, et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med. 2004;140:700–8.

    PubMed  Google Scholar 

  44. Prior JO, Quinones MJ, Hernandez-Pampaloni M, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005;111:2291–8.

    Article  PubMed  CAS  Google Scholar 

  45. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30:1472–7.

    Article  PubMed  CAS  Google Scholar 

  46. Pitkanen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes. 1998;47:248–54.

    Article  PubMed  CAS  Google Scholar 

  47. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.

    PubMed  Google Scholar 

  48. Di Carli MF, Janisse J, Grunberger G, et al. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41:1387–93.

    Article  PubMed  Google Scholar 

  49. Srinivasan M, Herrero P, McGill JB, et al. The effects of plasma insulin and glucose on myocardial blood flow in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2005;46:42–8.

    Article  PubMed  CAS  Google Scholar 

  50. Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.

    Article  PubMed  CAS  Google Scholar 

  51. Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97:1695–701.

    PubMed  CAS  Google Scholar 

  52. Timimi FK, Ting HH, Haley EA, et al. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31:552–7.

    Article  PubMed  CAS  Google Scholar 

  53. Ting HH, Timimi FK, Boles KS, et al. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22–8.

    Article  PubMed  CAS  Google Scholar 

  54. Winters B, Mo Z, Brooks-Asplund E, et al. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice. J Appl Physiol. 2000;89:2382–90.

    PubMed  CAS  Google Scholar 

  55. Pacher P, Steffens S. The emerging role of the endocannabinoid system in cardiovascular disease. Semin Immunopathol. 2009;31:63–77.

    Article  PubMed  CAS  Google Scholar 

  56. Matias I, Gonthier MP, Orlando P, et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab. 2006;91:3171–80.

    Article  PubMed  CAS  Google Scholar 

  57. •• Quercioli A, Pataky Z, Vincenti G, et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J. 2011;32:1369-78. This study has identified increases in endocannabinoid plasma levels as potential endogenous cardiovascular risk factors in obesity.

    Article  PubMed  CAS  Google Scholar 

  58. Schindler TH, Facta AD, Prior JO, et al. Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart. 2007;93:345–9.

    Article  PubMed  CAS  Google Scholar 

  59. •• Schindler TH, Cadenas J, Facta AD, et al. Improvement in coronary endothelial function is independently associated with a slowed progression of coronary artery calcification in type 2 diabetes mellitus. Eur Heart J. 2009;30:3064-73. This investigation conducted in type 2 DM patients demonstrates for the first time that glucose-lowering treatment may beneficially affect structure and function of the vascular wall, whereas the observed improvement in endothelium-related coronary artery function may also mediate direct preventive effects on the progression of coronary artery calcification or disease.

    Article  PubMed  Google Scholar 

  60. McMahon GT, Plutzky J, Daher E, Bhattacharyya T, Grunberger G, DiCarli MF. Effect of a peroxisome proliferator-activated receptor-gamma agonist on myocardial blood flow in type 2 diabetes. Diabetes Care. 2005;28:1145–50.

    Article  PubMed  CAS  Google Scholar 

  61. • Schindler TH, Facta AD, Prior JO, et al. Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging. 2009;36:219-29. This study signifies that even diffuse CAD without obstructive lesions may exert some downstream flow-limiting limiting effects on coronary flows in type 2 DM.

    Article  PubMed  Google Scholar 

  62. Sundell J, Janatuinen T, Ronnemaa T, et al. Diabetic background retinopathy is associated with impaired coronary vasoreactivity in people with Type 1 diabetes. Diabetologia. 2004;47:725–31.

    Article  PubMed  CAS  Google Scholar 

  63. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–62.

    PubMed  CAS  Google Scholar 

  64. Anand DV, Lim E, Hopkins D, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–21.

    Article  PubMed  Google Scholar 

  65. Hulten EA, Carbonaro S, Petrillo SP, et al. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57:1237–47.

    Article  PubMed  Google Scholar 

  66. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  67. Caballero AE. Metabolic and vascular abnormalities in subjects at risk for type 2 diabetes: the early start of a dangerous situation. Arch Med Res. 2005;36:241–9.

    Article  PubMed  CAS  Google Scholar 

  68. Hsiao EM, Ali B, Dorbala S. Clinical Role of Hybrid Imaging. Curr Cardiovasc Imaging Rep. 2011:ahead of print.

  69. Tirosh A, Shai I, Afek A, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011;364:1315–25.

    Article  PubMed  CAS  Google Scholar 

  70. Reaven GM. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: similarities and differences. J Clin Hypertens (Greenwich). 2011;13:238–43.

    Article  CAS  Google Scholar 

  71. Miller TD, Redberg RF, Wackers FJ. Screening asymptomatic diabetic patients for coronary artery disease: why not? J Am Coll Cardiol. 2006;48:761–4.

    Article  PubMed  Google Scholar 

  72. •• Young LH, Wackers FJ, Chyun DA, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547-55. This randomized controlled trial assessed the value of routine screening for CAD that identifies patients with type 2 DM as being at high cardiac risk and whether it affects their cardiac outcomes.

    Article  PubMed  CAS  Google Scholar 

  73. Wackers FJ, Young LH, Inzucchi SE, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  74. Hernandez-Pampaloni M, Keng FY, Kudo T, et al. Abnormal longitudinal, base-to-apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation. 2001;104:527–32.

    Article  PubMed  CAS  Google Scholar 

  75. Wackers FJ, Chyun DA, Young LH, et al. Resolution of asymptomatic myocardial ischemia in patients with type 2 diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study. Diabetes Care. 2007;30:2892–8.

    Article  PubMed  Google Scholar 

  76. Gould KL, Nakagawa Y, Nakagawa K, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation. 2000;101:1931–9.

    PubMed  CAS  Google Scholar 

  77. Valenta I, Quercioli A, Vincenti G, et al. Structural epicardial disease and microvascular function are determinants of an abnormal longitudinal myocardial blood flow difference in cardiovascular risk individuals as determined with PET/CT. J Nucl Cardiol. 2010;17:1023–33.

    Article  PubMed  Google Scholar 

  78. Curillova Z, Yaman BF, Dorbala S, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging. 2009;36:1603–10.

    Article  PubMed  Google Scholar 

  79. Zeiher AM, Drexler H. Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol. 1991;86 Suppl 2:203–13.

    PubMed  Google Scholar 

  80. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.

    Article  PubMed  CAS  Google Scholar 

  81. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  82. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    PubMed  CAS  Google Scholar 

  83. Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.

    Article  PubMed  CAS  Google Scholar 

  84. Fitzgerald SM, Kemp-Harper BK, Tare M, et al. Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes. Clin Exp Pharmacol Physiol. 2005;32:482–7.

    Article  PubMed  CAS  Google Scholar 

  85. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.

    Article  PubMed  CAS  Google Scholar 

  86. Feletou M, Vanhoutte PM. The alternative: EDHF. J Mol Cell Cardiol. 1999;31:15–22.

    Article  PubMed  CAS  Google Scholar 

  87. Modena MG, Bonetti L, Coppi F, et al. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol. 2002;40:505–10.

    Article  PubMed  Google Scholar 

  88. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the “vulnerable” patient. Circulation. 2004;110:1926–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Grant 3200B0-122237 of the Swiss National Science Foundation (SNF), with contributions of the Clinical Research Center, University Hospital and Faculty of Medicine, Geneva and the Louis-Jeantet Foundation, and Swiss Heart Foundation.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Schindler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenta, I., Dilsizian, V., Quercioli, A. et al. The Influence of Insulin Resistance, Obesity, and Diabetes Mellitus on Vascular Tone and Myocardial Blood Flow. Curr Cardiol Rep 14, 217–225 (2012). https://doi.org/10.1007/s11886-011-0240-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-011-0240-z

Keywords

Navigation