Skip to main content
Log in

Gitelman syndrome: an analysis of the underlying pathophysiologic mechanisms of acid–base and electrolyte abnormalities

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Gitelman syndrome is the most common inherited tubular disease resulting from mutations of the SLC12A3 gene that encodes the thiazide-sensitive sodium–chloride cotransporter in the early distal convoluted tubules. The review presents the underlying pathophysiologic mechanisms of acid–base and electrolyte abnormalities observed in patients with Gitelman syndrome. The syndrome is usually characterized by hypokalemic metabolic alkalosis in combination with hypomagnesemia and hypocalciuria. Additionally, increased chloride excretion and renin/aldosterone levels, hypophosphatemia (occasionally), hyponatremia (rarely) and glucose intolerance/insulin resistance have been reported. The knowledge of the pathophysiologic mechanisms is useful for the treatment of patients with Gitelman syndrome as well as for the understanding of other tubular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blanchard A, Bockenhauer D, Bolignano D, Calo LA, Cosyns E, Devuyst O, Ellison DH, Karet Frankl FE, Knoers NV, Konrad M, Lin SH, Vargas-Poussou R (2017) Gitelman syndrome: consensus and guidance from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int 91:24–33. doi:10.1016/j.kint.2016.09.046

    Article  PubMed  Google Scholar 

  2. Knoers NV, Levtchenko EN (2008) Gitelman syndrome. Orphanet J Rare Dis 3:22. doi:10.1186/1750-1172-3-22

    Article  PubMed  PubMed Central  Google Scholar 

  3. Riveira-Munoz E, Chang Q, Bindels RJ, Devuyst O (2007) Gitelman’s syndrome: Towards genotype-phenotype correlations? Pediatr Nephrol 22:326–332. doi:10.1007/s00467-006-0321-1

    Article  PubMed  Google Scholar 

  4. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163. doi:10.2215/CJN.05920613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060. doi:10.2215/CJN.08580813

    Article  CAS  PubMed  Google Scholar 

  6. McCormick JA, Ellison DH (2015) Distal convoluted tubule. Compr Physiol 5:45–98. doi:10.1002/cphy.c140002

    PubMed  Google Scholar 

  7. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    Article  CAS  PubMed  Google Scholar 

  8. Alfandary H, Landau D (2017) Future considerations based on the information from Barrter’s and Gitelman’s syndromes. Curr Opin Nephrol Hypertens 26:9–13. doi:10.1097/MNH.0000000000000285

    Article  CAS  PubMed  Google Scholar 

  9. Solomon R (1987) The relationship between disorders of K+ and Mg+ homeostasis. Semin Nephrol 7:253–262

    CAS  PubMed  Google Scholar 

  10. Huang CL, Kuo E (2007) Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18:2649–2652. doi:10.1681/ASN.2007070792

    Article  PubMed  Google Scholar 

  11. Stolting G, Fischer M, Fahlke C (2014) CLC channel function and dysfunction in health and disease. Front Physiol 5:378. doi:10.3389/fphys.2014.00378

    PubMed  PubMed Central  Google Scholar 

  12. Wu KL, Cheng CJ, Sung CC, Tseng MH, Hsu YJ, Yang SS, Chau T, Lin SH (2017) Identification of the causes for chronic hypokalemia: importance of urinary sodium and chloride excretion. Am J Med. doi:10.1016/j.amjmed.2017.01.023

    Google Scholar 

  13. Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syren ML, Borsa N, Mattiello C, Casari G, Bianchetti MG (2007) A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol 2:454–460. doi:10.2215/CJN.02950906

    Article  CAS  PubMed  Google Scholar 

  14. Lee Hamm L, Hering-Smith KS, Nakhoul NL (2013) Acid–base and potassium homeostasis. Semin Nephrol 33:257–264. doi:10.1016/j.semnephrol.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  15. Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10:1257–1272. doi:10.2215/CJN.09750913

    Article  CAS  PubMed  Google Scholar 

  16. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658. doi:10.1172/JCI24134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellison DH (2000) Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol 279:F616–F625

    Article  CAS  PubMed  Google Scholar 

  18. Reilly RF, Huang CL (2011) The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol 7:669–674. doi:10.1038/nrneph.2011.138

    Article  CAS  PubMed  Google Scholar 

  19. Favre GA, Nau V, Kolb I, Vargas-Poussou R, Hannedouche T, Moulin B (2012) Localization of tubular adaptation to renal sodium loss in Gitelman syndrome. Clin J Am Soc Nephrol 7:472–478. doi:10.2215/CJN.00940111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellison DH (2012) Adaptation in Gitelman syndrome: “we just want to pump you up”. Clin J Am Soc Nephrol 7:379–382. doi:10.2215/CJN.01060112

    Article  CAS  PubMed  Google Scholar 

  21. Hsu YJ, Yang SS, Cheng CJ, Liu ST, Huang SM, Chau T, Chu P, Salter DM, Lee HS, Lin SH (2015) Thiazide-sensitive Na+–Cl cotransporter (NCC) gene inactivation results in increased duodenal Ca2+ absorption, enhanced osteoblast differentiation and elevated bone mineral density. J Bone Miner Res 30:116–127. doi:10.1002/jbmr.2306

    Article  CAS  PubMed  Google Scholar 

  22. Nicolet-Barousse L, Blanchard A, Roux C, Pietri L, Bloch-Faure M, Kolta S, Chappard C, Geoffroy V, Morieux C, Jeunemaitre X, Shull GE, Meneton P, Paillard M, Houillier P, De Vernejoul MC (2005) Inactivation of the Na–Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and NCC null mice. J Bone Miner Res 20:799–808. doi:10.1359/JBMR.041238

    Article  CAS  PubMed  Google Scholar 

  23. Elisaf M, Panteli K, Theodorou J, Siamopoulos KC (1997) Fractional excretion of magnesium in normal subjects and in patients with hypomagnesemia. Magnes Res 10:315–320

    CAS  PubMed  Google Scholar 

  24. Viering DH, de Baaij JH, Walsh SB, Kleta R, Bockenhauer D (2016) Genetic causes of hypomagnesemia, a clinical overview. Pediatr Nephrol. doi:10.1007/s00467-016-3416-3

    PubMed  PubMed Central  Google Scholar 

  25. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L (1994) Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol 14:127–135

    Article  CAS  PubMed  Google Scholar 

  26. Malafronte C, Borsa N, Tedeschi S, Syren ML, Stucchi S, Bianchetti MG, Achilli F, Bettinelli A (2004) Cardiac arrhythmias due to severe hypokalemia in a patient with classic Bartter disease. Pediatr Nephrol 19:1413–1415. doi:10.1007/s00467-004-1611-0

    Article  PubMed  Google Scholar 

  27. Foglia PE, Bettinelli A, Tosetto C, Cortesi C, Crosazzo L, Edefonti A, Bianchetti MG (2004) Cardiac work up in primary renal hypokalaemia–hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transpl 19:1398–1402. doi:10.1093/ndt/gfh204

    Article  Google Scholar 

  28. Vigano C, Amoruso C, Barretta F, Minnici G, Albisetti W, Syren ML, Bianchetti MG, Bettinelli A (2013) Renal phosphate handling in Gitelman syndrome—the results of a case–control study. Pediatr Nephrol 28:65–70. doi:10.1007/s00467-012-2297-3

    Article  PubMed  Google Scholar 

  29. Katopodis K, Elisaf M, Siamopoulos KC (1996) Hypophosphataemia in a patient with Gitelman’s syndrome. Nephrol Dial Transpl 11:2090–2092

    Article  CAS  Google Scholar 

  30. Ganguli A, Veis JH (2017) Hyponatremia—a rare complication of Gitelman’s syndrome. Indian J Nephrol 27:74–77. doi:10.4103/0971-4065.177208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang KS, Kim GH (2010) Thiazide-induced hyponatremia. Electrol Blood Press 8:51–57. doi:10.5049/EBP.2010.8.1.51

    Article  CAS  Google Scholar 

  32. Schepkens H, Stubbe J, Hoeben H, Vanholder R, Lameire N (2001) Severe hyponatraemia and hypouricaemia in Gitelman’s syndrome. Nephrol Dial Transpl 16:2250–2252

    Article  CAS  Google Scholar 

  33. Ali A, Masood Q, Yaqub S, Kashif W (2013) A case of Gitelman syndrome with severe hyponatraemia and hypophosphataemia. Singap Med J 54:e18–e20

    Article  Google Scholar 

  34. Ariceta G, Rodriguez-Soriano J (2006) Inherited renal tubulopathies associated with metabolic alkalosis: effects on blood pressure. Semin Nephrol 26:422–433. doi:10.1016/j.semnephrol.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  35. Calo LA, Schiavo S, Davis PA, Pagnin E, Mormino P, D’Angelo A, Pessina AC (2010) ACE2 and angiotensin 1–7 are increased in a human model of cardiovascular hyporeactivity: pathophysiological implications. J Nephrol 23:472–477

    PubMed  Google Scholar 

  36. Berry MR, Robinson C, Karet Frankl FE (2013) Unexpected clinical sequelae of Gitelman syndrome: hypertension in adulthood is common and females have higher potassium requirements. Nephrol Dial Transpl 28:1533–1542. doi:10.1093/ndt/gfs600

    Article  CAS  Google Scholar 

  37. Yuan T, Jiang L, Chen C, Peng X, Nie M, Li X, Xing X, Li X, Chen L (2017) Glucose tolerance and insulin responsiveness in Gitelman syndrome patients. Endocr Connect 6:243–252. doi:10.1530/EC-17-0014

    Article  PubMed  PubMed Central  Google Scholar 

  38. Calo LA, Maiolino G, Naso A, Davis PA (2015) The association of systemic oxidative stress with insulin resistance: mechanistic insights from studies in Bartter’s and Gitelman’s syndromes. Clin Endocrinol (Oxf) 83:994–995. doi:10.1111/cen.12817

    Article  Google Scholar 

  39. Davis PA, Pagnin E, Semplicini A, Avogaro A, Calo LA (2006) Insulin signaling, glucose metabolism, and the angiotensin II signaling system: studies in Bartter’s/Gitelman’s syndromes. Diabetes Care 29:469–471

    Article  PubMed  Google Scholar 

  40. Calo LA, Maiolino G, Alessi M (2017) Magnesium, cardiovascular-renal disease and the Gitelman’s syndrome paradox. J Hypertens 35:1122–1124. doi:10.1097/HJH.0000000000001314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Filippatos.

Ethics declarations

Conflict of interest

Professor MS Elisaf reports personal fees from ASTRA ZENECA, Grants and personal fees from MSD, personal fees from PFIZER, ABBOTT, SANOFI, BOEHRINGER INGELHEIM, ELI LILLY, GSK. The authors have given talks and attended conferences sponsored by various pharmaceutical companies, including Bristol-Myers Squibb, Pfizer, Lilly, Abbott, Amgen, AstraZeneca, Novartis, Vianex, Teva and MSD.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippatos, T.D., Rizos, C.V., Tzavella, E. et al. Gitelman syndrome: an analysis of the underlying pathophysiologic mechanisms of acid–base and electrolyte abnormalities. Int Urol Nephrol 50, 91–96 (2018). https://doi.org/10.1007/s11255-017-1653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1653-4

Keywords

Navigation