Skip to main content
Log in

High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Patients with acute lymphoblastic leukemia presenting the immunophenotypic marker CD10+ (calla), usually has treatment profile good. The FLT3 molecular marker is listed as a prognostic factor, an important leukaemogenic marker in acute leukemias, also the polymorphism (G1082A) of the IL10 interleukin can to present pleiotropic effects in many diseases and could is associated to development of ALL. However, the FLT3 expression is variability among patients with calla-ALL. The aim of this study was to determine the FLT3 expression, to associate with the genotypes and allelic of G1082A (IL10) in 50 patients with calla-ALL and assess the overall survival at 98 months follow-up. The expression was assessed by quantitative real time PCR (RT-PCR), the G1082A polymorphism was identified by allele-specific PCR and for immunophenotypic classification was used specific markers of B lineage-calla. We observed that patients who died showed higher FLT3 expression (p = 0.005), worse survival (p = 0.0137) and the IL10G allele may favor the survival, because the IL10 GG and IL10 GA genotypes showed a low FLT3 expression (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greaves MF, Brown C, Rapson NT et al (1975) Antisera to acute lymphoblastic leukemia cells. Clin Immunol Immunopathol 4:67–84

    Article  PubMed  CAS  Google Scholar 

  2. Shipp MA, Look AT (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 82:1052–1070

    PubMed  CAS  Google Scholar 

  3. Mari B, Auberger P (1995) Structure et fonction des ectopeptidases du système immunitaire. Med Sci 11:681–690

    Google Scholar 

  4. Greaves MF, Hairi G, Newman RA et al (1983) Selective expression of the common acute lymphoblastic leukemia (gp100) antigen on immature lymphoid cells and their malignant counterparts. Blood 61:628–639

    PubMed  CAS  Google Scholar 

  5. Cossman J, Neckers LM, Leonard WJ et al (1983) Polymorphonuclear neutrophils express the common acute lymphoblastic leukemia antigen. J Exp Med 157:1064–1069

    Article  PubMed  CAS  Google Scholar 

  6. LeBien T, McCormack RT (1989) The common acute lymphoblastic leukemia antigen (CD10). Emancipation from a functional enigma. Blood 73:625–635

    PubMed  CAS  Google Scholar 

  7. Pui CH, Behm FG, Crist WM (1993) Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 82:343–362

    PubMed  CAS  Google Scholar 

  8. Rosnet O, Schiff C, Pebusque MJ, Marchetto et al (1993) Human FLT3/FLK2: gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119

    PubMed  CAS  Google Scholar 

  9. Ansari M, Sauty G, Labuda M et al (2009) Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 114(7):1383–1386

    Article  PubMed  CAS  Google Scholar 

  10. Moore KW et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  11. Edwards-Smith CJ, Jonsson JR, Purdie DM et al (1999) Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 30:526–530

    Article  PubMed  CAS  Google Scholar 

  12. Franchimont D, Martens H, Hagelstein MT et al (1999) Tumor necrosis factor alpha decreases, and interleukin-10 increases, the sensitivity of human monocytes to dexamethasone: potential regulation of the glucocorticoid receptor. J Clin Endocrinol Metab 84:2834–2839

    Article  PubMed  CAS  Google Scholar 

  13. Quddus FF, Leventhal BG, Boyett JM et al (1985) Glucocorticoid receptors in immunological subtypes of childhood acute lymphocytic leukemia cells: a Pediatric Oncology Group Study. Cancer Res 45:6482–6486

    PubMed  CAS  Google Scholar 

  14. Tissing WJ, Meijerink JP, den Boer ML et al (2003) Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17:17–25

    Article  PubMed  CAS  Google Scholar 

  15. Tsai SY, Carlstedt-Duke J, Weigel NL et al (1988) Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55:361–369

    Article  PubMed  CAS  Google Scholar 

  16. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91:752–756

    Article  PubMed  CAS  Google Scholar 

  17. Arya SK, Wong-Staal F, Gallo RC (1984) Dexamethasone-mediated inhibition of human T cell growth factor and gamma-interferon messenger RNA. J Immunol 133:273–276

    PubMed  CAS  Google Scholar 

  18. Schuchard M, Landers JP, Sandhu NP et al (1993) Steroid hormone regulation of nuclear proto-oncogenes. Endocr Rev 14:659–669

    PubMed  CAS  Google Scholar 

  19. Harmon JM, Norman MR, Fowlkes BJ et al (1979) Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 98:267–278

    Article  PubMed  CAS  Google Scholar 

  20. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  21. Coustan-Smith E, Behm FG, Sanchez J et al (1998) Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 351:550–554

    Article  PubMed  CAS  Google Scholar 

  22. Peng H-L, Zhang G-S, Gong F-J et al (2008) Fms-like tyrosine kinase (FLT)3 and FLT3 internal tandem duplication in different types of adult leukemia: analysis of 147 patients. Croatian Medical Journal Croat Med J 83:650–659

    Article  Google Scholar 

  23. Consolini R, Legitimo A, Rondelli R et al (1998) Clinical relevance of CD10 expression in childhood ALL. Haematologica 83:967–973

    PubMed  CAS  Google Scholar 

  24. Cazé MO, Bueno D, Santos ME (2010) Referential study of a chemotherapy protocol for acute lymphocytic leukemia in childhood. Rev HCPA 30(1):5–12

    Google Scholar 

  25. Brown P, Small D (2004) FLT3 inhibitors: a paradigm for the development of targeted therapies for pediatric cancer. Eur J Cancer 40:707–721

    Article  PubMed  CAS  Google Scholar 

  26. Borowitz MJ, Devidas M, Hunger SP et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111(12):5477–5485

    Article  PubMed  CAS  Google Scholar 

  27. Basso G, Veltroni M, Valsecchi MG et al (2009) Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 27(31):5168–5174

    Article  PubMed  Google Scholar 

  28. Stow P, Key L, Chen X et al (2010) Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 115(23):4657–4663

    Article  PubMed  CAS  Google Scholar 

  29. Verhoeven MA, Van Wering ER, Beishuizen A, Roeffen ET et al (1995) Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 9:1523–1533

    PubMed  Google Scholar 

  30. Baer MR, Stewart CC, Dodge RK et al (2001) High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 97:3574–3580

    Article  PubMed  CAS  Google Scholar 

  31. Byrd JC, Mrózek K, Dodge RK et al (2012) Success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia, Group B (CALGB 8461). Blood 100(13):4325–4336

    Article  Google Scholar 

  32. Slovak ML, Kopecky KJ, Cassileth PA et al (2012) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 96(13):4075–4083

    Google Scholar 

  33. Gaipa G, Basso G, Maglia O et al (2005) Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 19(1):49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the FACEPE (Foundation for assistance to science and technology of the state of Pernambuco), UNIPECLIN (Clinical Research Unit) and CAPES (Coordination for Improvement in Higher Education). We thank the support of Dr. Ednalva Pereira Leite (CEONHPE) and Dr. Vera Lúcia Lins de Morais (CEONHPE) for clinical competence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayse Maria Vasconcelos de Deus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Deus, D.M.V., de Souza, P.R.E. & Muniz, M.T.C. High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia. Mol Biol Rep 40, 1609–1613 (2013). https://doi.org/10.1007/s11033-012-2209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2209-4

Keywords

Navigation