Skip to main content
Log in

Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the osteoconductivity, and absorbability of hydroxyapatite or beta-tricalcium phosphate in clinical scenario of opening wedge high tibial osteotomy Total 41 knees of 40 patients with follow up period of more than 1 year were enrolled. These patients were divided into two groups, Group I (22 knees, 21 patients) used hydroxyapatite and Group II (19 knees, 19 patients) used beta-tricalcium phosphate as a substitute in the opening gap. According to proven method, the osteoconductivity was assessed radiographically by the extent of new bone formation at osteotomy space and absorbability was evaluated by measuring the area occupied by substitute at immediate postoperative, postoperative 6 months and 1 year. Regarding preoperative demographic data, no significant differences were found between two groups. No statistically significant differences were found between two groups regarding lower limb alignment (mechanical femorotibial angle, weight-bearing line%) and posterior tibial slope at postoperative and final follow up radiographs. Concerning the osteoconductivity, there were no significant differences between two groups in any zone. However, the absorption rate was significantly greater in the Group II than in Group I at 6 months (Group I: 13.7 ± 6.8, group II: 35.3 ± 15.8, P = 0.001) and 1 year (Group I: 24.2 ± 6.3, Group II: 49.6 ± 14.3, P < 0.0001). The complications related to bone substitutes were not observed. Both hydroxyapatite and beta-tricalcium phosphate showed satisfactory gap healing without complications and can be successfully used as alternative healing materials in opening wedge high tibial osteotomy. Our study showed that beta-tricalcium phosphate has superior absorbability than hydroxyapatite. But osteoconductivity showed no significant difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Hemert WL, Willems K, Anderson PG, van Heerwaarden RJ, Wymenga AB. Tricalcium phosphate granules or rigid wedge preforms in opening wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee. 2004;11(6):451–6.

    Article  Google Scholar 

  2. Onodera J, Kondo E, Omizu N, Ueda D, Yagi T, Yasuda K. Beta-tricalcium phosphate shows superior absorption rate and osteoconductivity compared to hydroxyapatite in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2014;22(11):2763–70.

    Article  Google Scholar 

  3. Cho SW, Kim DH, Lee GC, Lee SH, Park SH. Comparison between autogenous bone graft and allogenous cancellous bone graft in medial open wedge high tibial osteotomy with 2-year follow-up. Knee Surg Relat Res. 2013;25(3):117–25.

    Article  Google Scholar 

  4. Hernigou P, Medevielle D, Debeyre J, Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am. 1987;69(3):332–54.

    Article  Google Scholar 

  5. Brouwer RW, Bierma-Zeinstra SM, van Raaij TM, Verhaar JA. Osteotomy for medial compartment arthritis of the knee using a closing wedge or an wedge controlled by a Puddu plate. A one-year randomised, controlled study. J Bone Joint Surg Br. 2006;88(11):1454–9.

    Article  Google Scholar 

  6. Coventry MB, Ilstrup DM, Wallrichs SL. Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Joint Surg Am. 1993;75(2):196–201.

    Article  Google Scholar 

  7. Wright JM, Crockett HC, Slawski DP, Madsen MW, Windsor RE. High tibial osteotomy. J Am Acad Orthop Surg. 2005;13(4):279–89.

    Article  Google Scholar 

  8. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P. Outcome after high tibial open-wedge osteotomy: a retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):170–80.

    Article  Google Scholar 

  9. Amendola A, Fowler PJ, Litchfield R, Kirkley S, Clatworthy M. Wedge high tibial osteotomy using a novel technique: early results and complications. J Knee Surg. 2004;17(3):164–9.

    Google Scholar 

  10. Tunggal JA, Higgins GA, Waddell JP. Complications of closing wedge high tibial osteotomy. Int Orthop. 2010;34(2):255–61.

    Article  Google Scholar 

  11. Rodner CM, Adams DJ, Diaz-Doran V, et al. Medial wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med. 2006;34(9):1431–41.

    Article  Google Scholar 

  12. Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11(3):132–8.

    Article  Google Scholar 

  13. Valkering KP, van den Bekerom MP, Kappelhoff FM, Albers GH. Complications after tomofix medial wedge high tibial osteotomy. J Knee Surg. 2009;22(3):218–25.

    Article  Google Scholar 

  14. Miller BS, Downie B, McDonough EB, Wojtys EM. Complications after medial wedge high tibial osteotomy. Arthroscopy. 2009;25(6):639–46.

    Article  Google Scholar 

  15. Brosset T, Pasquier G, Migaud H, Gougeon F. Wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFix) and early weight-bearing: prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop Traumatol Surg Res. 2011;97(7):705–11.

    Article  Google Scholar 

  16. Lash NJ, Feller JA, Batty LM, Wasiak J, Richmond AK. Bone grafts and bone substitutes for opening-wedge osteotomies of the knee: a systematic review. Arthroscopy. 2015;31(4):720–30.

    Article  Google Scholar 

  17. Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee. 2001;8(2):103–10.

    Article  Google Scholar 

  18. Tanaka T, Kumagae Y, Saito M, et al. Bone formation and resorption in patients after implantation of beta-tricalcium phosphate blocks with 60% and 75% porosity in opening-wedge high tibial osteotomy. J Biomed Mater Res B Appl Biomater. 2008;86(2):453–9.

    Article  Google Scholar 

  19. Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85-a(1):78–85.

    Article  Google Scholar 

  20. Miniaci A, Ballmer FT, Ballmer PM, Jakob RP. Proximal tibial osteotomy. A new fixation device. Clin Orthop Relat Res. 1989; Sep(246):250–9.

  21. Uemura K, Kanamori A, Aoto K, Yamazaki M, Sakane M. Novel unidirectional porous hydroxyapatite used as a bone substitute for open wedge high tibial osteotomy. J Mater Sci Mater Med. 2014;25(11):2541–7.

    Article  Google Scholar 

  22. Chazono M, Tanaka T, Kitasato S, Kikuchi T, Marumo K. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci. 2008;13(6):550–5.

    Article  Google Scholar 

  23. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    Google Scholar 

  24. Wenisch S, Stahl JP, Horas U, et al. In vivo mechanisms of hydroxyapatite ceramicdegradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A. 2003;67:713–8.

    Article  Google Scholar 

  25. Yamasaki N, Hirao M, Nanno K, et al. A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater. 2009;91:788–98.

    Article  Google Scholar 

Download references

Funding

This paper was supported by Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Jun Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, KJ., Ko, YB., Jaiswal, S. et al. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy. J Mater Sci: Mater Med 27, 179 (2016). https://doi.org/10.1007/s10856-016-5795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5795-1

Keywords

Navigation