Skip to main content

Advertisement

Log in

Effect of topical motesanib in experimental corneal neovascularization model

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare the efficacy of topical bevacizumab and motesanib in an experimental corneal neovascularization model, and find the most effective motesanib dose.

Materials and methods

In experiments, 42 Wistar Albino rats were randomly divided into six groups (n = 7). Corneal cauterization was applied to all groups except the group 1. Group 1 did not receive any treatment. Topical dimethylsulfoxide was applied to sham group three times a day(tid). Topical bevacizumab drops (5 mg/ml) were applied to Group 3 tid. Topical motesanib drops with a dose of 2.5, 5, and 7.5 mg/ml were respectively applied in Groups 4, 5, and 6 tid. On the 8th day, corneal photographs of all rats were taken under general anesthesia, and the percentage of corneal neovascular area was calculated. VEGF-A mRNA, VEGFR-2 mRNA, miRNA-21, miRNA-27a, miRNA-31, miRNA-126, miRNA-184, and miRNA-204 were evaluated by the qRT-PCR method in corneas taken after decapitation.

Results

The percentage of corneal neovascularization areas and VEGF-A mRNA expression levels were decreased in all treatment groups compared to group 2 (p < 0.05). VEGFR-2 mRNA levels were found to be statistically significantly decreased in groups 4 and 6 compared to group 2 (p < 0.05). Statistically significant changes were detected in the expression levels of only miRNA-126 among all miRNAs.

Conclusion

Motesanib with a dose of 7.5 mg/ml statistically significantly suppressed the VEGFR-2 mRNA level compared with other treatment doses and may be more effective than bevacizumab. Further, miRNA-126 can be used as a proangiogenic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang SX, Ma JX (2007) Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26:1–37

    Article  PubMed  Google Scholar 

  2. Feizi S, Azari AA, Safapour S (2017) Therapeutic approaches for corneal neovascularization. Eye and Vision 4:1–10

    Article  Google Scholar 

  3. Philipp W, Speicher L, Humpel C (2000) Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Investig Ophthalmol Visual Sci 41:2514–2522

    CAS  Google Scholar 

  4. Ho QT, Kuo CJ (2007) Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 39:1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gan L, Fagerholm P, Palmblad J (2004) Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand 82:557–563

    Article  CAS  PubMed  Google Scholar 

  6. Scholl S, Kirchhof J, Augustin AJ (2010) Antivascular endothelial growth factors in anterior segment diseases. Anti-VEGF. Karger Publishers, vol 46, pp 133–139

  7. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Cai S, Jia Y, Qi C, Sun J, Zhang H et al (2017) Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization. Theranostics 7:3155–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodrigues EB, Farah ME, Maia M, Penha FM, Regatieri C, Melo GB et al (2009) Therapeutic monoclonal antibodies in ophthalmology. Prog Retin Eye Res 28(2):117–144

    Article  CAS  PubMed  Google Scholar 

  10. Montanino A, Manzo A, Carillio G, Palumbo G, Esposito G et al (2021) Angiogenesis inhibitors in small cell lung cancer. Front Oncol 11:655316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li C, Kuchimanchi M, Hickman D, Poppe L, Hayashi M, Zhou Y et al (2009) In vitro metabolism of the novel, highly selective oral angiogenesis inhibitor motesanib diphosphate in preclinical species and in humans. Drug Metab Dispos 37:1378–1394

    Article  CAS  PubMed  Google Scholar 

  12. Sawaki A, Yamada Y, Komatsu Y, Kanda T, Koseki M, Baba H et al (2010) Phase II study of motesanib in Japanese patients with advanced gastrointestinal stromal tumors with prior exposure to imatinib mesylate. Cancer Chemother Pharmacol 65:961–967

    Article  CAS  PubMed  Google Scholar 

  13. Sherman SI, Wirth LJ, Droz J-P, Hofmann M, Bastholt L, Martins RG et al (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359:31–42

    Article  CAS  PubMed  Google Scholar 

  14. Tektemur A, Etem Önalan E, Kaya Tektemur N, Dayan Cinkara S, Kılınçlı Çetin A, Tekedereli et al (2021) Carbamazepine-induced sperm disorders can be associated with the altered expressions of testicular KCNJ11/miR-let-7a and spermatozoal CFTR/miR-27a. Andrologia 53:e13954

    Article  CAS  PubMed  Google Scholar 

  15. Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y (2014) Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells. Mol Cell Biochem 386:15–25

    Article  CAS  PubMed  Google Scholar 

  16. Kamanu TK, Radovanovic A, Archer JA, Bajic VB (2013) Exploration of miRNA families for hypotheses generation. Sci Rep 3:1–8

    Article  Google Scholar 

  17. Mukwaya A, Jensen L, Peebo B, Lagali N (2019) MicroRNAs in the cornea: role and implications for treatment of corneal neovascularization. Ocular Surface 17:400–411

    Article  PubMed  Google Scholar 

  18. Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H (2016) miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model. Int J Mol Sci 17:895

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J, (2011) MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 91:471–477

    Article  CAS  PubMed  Google Scholar 

  20. Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ et al (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135:3989–39893

    Article  CAS  PubMed  Google Scholar 

  21. Yaşar M, Çakmak H, Dündar S, Örenay Boyacıoğlu S, Çalışkan M, Ergin K (2020) The role of microRNAs in corneal neovascularization and its relation to VEGF. Cutan Ocul Toxicol 39(4):341–347

    Article  PubMed  Google Scholar 

  22. Liu C-H, Huang S, Britton WR, Chen J (2020) MicroRNAs in vascular eye Diseases. Int J Mol Sci 21:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Zhang T, Ma X, Zou J (2017) Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea. Oncotarget 8:11797–11808

    Article  PubMed  Google Scholar 

  24. Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA et al (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood J Am Soc Hematol 119:1607–1616

    CAS  Google Scholar 

  25. Chen P, Yin H, Wang Y, Wang Y, Xie L (2012) Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear. Mol Vis 18:864–873

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Di G, Dong M, Qu M, Zhao X, Duan H et al (2018) Epithelium-derived miR-204 inhibits corneal neovascularization. Exp Eye Res 167:122–127

    Article  CAS  PubMed  Google Scholar 

  27. Zong R, Zhou T, Lin Z, Bao X, Xiu Y, Chen Y et al (2016) Down-regulation of MicroRNA-184 is associated with corneal neovascularization. Invest Ophthalmol Vis Sci 57(3):1398–1407

    Article  CAS  PubMed  Google Scholar 

  28. Al-Debasi T, Al-Bekairy A, Al-Katheri A, Al Harbi S, Mansour M (2017) Topical versus subconjunctival anti-vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol 31:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Habot-Wilner Z, Barequet IS, MoisseievJ, Rossner M IY (2010) The inhibitory effect of different concentrations of topical bevacizumab on corneal neovascularization. Acta Ophthalmol 88:862–867

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  PubMed  Google Scholar 

  31. Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38:3–10

    Article  Google Scholar 

  32. Yildirim H, Aydemir O, Balbaba M, Özercan IH, Ilhan N (2020) Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization. Cutan Ocul Toxicol 39:223–228

    Article  CAS  PubMed  Google Scholar 

  33. Sahan B, Ciftci F, Eyuboglu S, Yilmaz B, Yalvac BI (2019) Comparison of the effects of dovitinib and bevacizumab on reducing neovascularization in an experimental rat corneal neovascularization model. Cornea 38:1161–1168

    Article  PubMed  Google Scholar 

  34. Cakmak H, Gokmen E, Bozkurt G, Kocaturk T, Ergin K (2018) Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutan Ocul Toxicol 37(2):191–195

    Article  PubMed  Google Scholar 

  35. Rho CR, Kang S, Park KC, Yang KJ, Choi H, Cho WK (2015) Antiangiogenic effects of topically administered multiple kinase inhibitor, motesanib (AMG 706), on experimental choroidal neovascularization in mice. J Ocul Pharmacol Ther 31:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L et al (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Can Res 66:8715–8721

    Article  CAS  Google Scholar 

  37. Coxon A, Bready J, Kaufman S, Estrada J, Osgood T, Canon J (2012) Anti-tumor activity of motesanib in a medullary thyroid cancer model. J Endocrinol Invest 35:181–190

    CAS  PubMed  Google Scholar 

  38. Coxon A, Bush T, Saffran D, Kaufman S, Belmontes B, Rex K et al (2009) Broad antitumor activity in breast cancer xenografts by motesanib, a highly selective, oral inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and Kit receptors. Clin Cancer Res 15:110–118

    Article  CAS  PubMed  Google Scholar 

  39. Tebbutt N, Kotasek D, Burris HA, Schwartzberg LS, Hurwitz H, Golstein SJ, D, (2015) Motesanib with or without panitumumab plus FOLFIRI or FOLFOX for the treatment of metastatic colorectal cancer. Cancer Chemother Pharmacol 75:993–1004

    Article  CAS  PubMed  Google Scholar 

  40. Dell S, Peters S, Müther P, Kociok N, Joussen AM (2006) The role of PDGF receptor inhibitors and PI3-kinase signaling in the pathogenesis of corneal neovascularization. Invest Ophthalmol Vis Sci 47:1928–1937

    Article  PubMed  Google Scholar 

Download references

Funding

Financial support was received from Fırat University Scientific Research Project Center (FÜBAP) for this submission (Project no: TF: 2021/028).

Author information

Authors and Affiliations

Authors

Contributions

Mukaddes Çelenk; concept, design, intellectuel content and drafting article. Hakan Yıldırım; design, concept and statistical analysis. Ahmet Tektemur; acquisition data, drafting article, interpretation of data. Mehmet Balbaba; biochemical analysis, interpretation of data. Murat Erdağ (corresponding author); acquisition of data, interpretation of data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Murat Erdağ.

Ethics declarations

Competing interests

The authors declare no competing interests.

Animal research

This study was carried out in accordance with the ARVO Statement of Ophthalmic and Vision Research on Animal Use. The Fırat University Experimental Animal Studies Ethics Committee approved the study protocols.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelenk, M., Yıldırım, H., Tektemur, A. et al. Effect of topical motesanib in experimental corneal neovascularization model. Int Ophthalmol 43, 2989–2997 (2023). https://doi.org/10.1007/s10792-023-02685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02685-3

Keywords

Navigation