Skip to main content
Log in

Das eine unter vielen – Spermienqualität und Möglichkeiten der Selektion

The one among many: sperm quality and selection possibilities

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Der Erfolg einer assistierten Befruchtung hängt von der quantitativen und in hohem Maß auch von der qualitativen Selektion geeigneter Spermien ab. Neben klassischen von der Weltgesundheitsorganisation (WHO) empfohlenen Methoden wie dem einfachen Waschen, dem Swim-up-Verfahren oder der Dichtegradientenzentrifugation gibt es eine Reihe neuer Methoden zur Selektion der „besten“ Spermien. Alle Aufbereitungen haben das Ziel, nicht nur motile und normal geformte, sondern auch reife und physiologisch einwandfreie Spermien mit intakter DNA anzureichern. Viele Methoden können nur Ergebnisse im Sinne diagnostischer Parameter liefern, da sie das Spermium bei der Analyse verbrauchen. Mit anderen Methoden wird versucht, am intakten Spermium eine Analyse oder Anreicherung vorzunehmen, um so eine Population von geeigneten Spermien zu erlangen. Dieser Beitrag gibt einen Überblick über die aktuell anwendbaren Methoden der Spermienanalyse und -selektion sowie einen Ausblick auf zukünftige Methoden.

Abstract

For an optimal outcome in assisted reproductive treatment (ART), the preparation and selection of the appropriate sperm or sperm population is an absolute prerequisite. A wide range of different preparation methods and functional assays are available. In addition to the classical World Health Organization methods like simple washing, the swim-up technique, and density gradient centrifugation, a whole range of new methods are available for the selection of the best sperm. All these approaches have the goal of enriching motile and morphologically normal spermatozoa. However, maturity, DNA integrity, and physiological parameters also play an important role. Still, some of the methods can only be used as a diagnostic tool, since the assay itself devitalizes the sperm so that it cannot be used for ART. Other methods try to select vital sperm according to their physiological functions. This article gives an overview of currently available techniques for sperm analysis and selection, as well as an outlook on future techniques that are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. WHO (2010) WHO laboratory manual for the examination of human semen, 5. Aufl. Cambridge University Press, Cambridge

    Google Scholar 

  2. Björndahl L, Kvist U (2003) Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod Biomed Online 7:440–448

    Article  PubMed  Google Scholar 

  3. Dissanayake DM, Amaranath KA, Perera RR, Wijesinghe PS (2014) Antibiotics supplemented culture media can eliminate non-specific bacteria from human semen during sperm preparation for intra uterine insemination. J Hum Reprod Sci 7:58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thijssen A, Klerkx E, Huyser C, Bosmans E, Campo R, Ombelet W (2014) Influence of temperature and sperm preparation on the quality of spermatozoa. Reprod Biomed Online 28:436–442

    Article  PubMed  Google Scholar 

  5. Yu B, Zhou H, Liu M, Zheng T, Jiang L, Zhao M, Xu X, Huang Z (2015) Epigenetic alterations in density selected human spermatozoa for assisted reproduction. PLoS ONE 10:e145585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Butt A, Chohan MA (2016) Comparative efficacy of density gradient and swim-up methods of semen preparation in intrauterine insemination cycles. J Pak Med Assoc 66:932–937

    PubMed  Google Scholar 

  7. Xue X, Wang WS, Shi JZ, Zhang SL, Zhao WQ, Shi WH, Guo BZ, Qin Z (2014) Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet 31:1161–1166

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boomsma CM, Heineman MJ, Cohlen BJ, Farquhar C (2007) Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004507.pub3

    Article  PubMed  Google Scholar 

  9. Du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarwal A (2011) Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol 9:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sakkas D, Ramalingam M, Garrido N, Barratt CL (2015) Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update 21:711–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tosti E, Ménézo Y (2016) Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 22:420–439

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schagdarsurengin U, Steger K (2016) Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol 13:584–595

    Article  CAS  PubMed  Google Scholar 

  13. Nordhoff V (2015) How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology 3:156–162

    Article  CAS  PubMed  Google Scholar 

  14. Nordhoff V, Schüring AN, Krallmann C, Zitzmann M, Schlatt S, Kiesel L, Kliesch S (2013) Optimizing TESE-ICSI by laser-assisted selection of immotile spermatozoa and polarization microscopy for selection of oocytes. Andrology 1:67–74

    Article  CAS  PubMed  Google Scholar 

  15. Gerber PA, Kruse R, Hirchenhain J, Krüssel JS, Neumann NJ (2008) Pregnancy after laser-assisted selection of viable spermatozoa before intracytoplasmatic sperm injection in a couple with male primary cilia dyskinesia. Fertil Steril 89:1826.e9–1826.e12

    Article  Google Scholar 

  16. Steger K, Cavalcanti MC, Schuppe HC (2011) Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. Int J Androl 34:513–527

    Article  CAS  PubMed  Google Scholar 

  17. Terquem A, Dadoune JP (1983) Aniline blue staining of human spermatozoon chromatin. Evaluation of nuclear maturation. In: André J (Hrsg) The Sperm Cell. Martinus Nijhoff, The Hague, S 249–252

    Chapter  Google Scholar 

  18. Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? J Androl 30:219–229

    Article  CAS  PubMed  Google Scholar 

  19. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP (1999) Utility of the sperm chromatin assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049

    Article  CAS  PubMed  Google Scholar 

  20. Practice Committee of the American Society for Reproductive Medicine (2015) Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril 103:e18–e25

    Google Scholar 

  21. Barratt CLR, Björndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, Oates RD, van der Poel S, St John B, Sigman M, Sokol R, Tournaye H (2017) The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum Reprod Update 23:660–680

    Article  PubMed  PubMed Central  Google Scholar 

  22. Colpi GM, Francavilla S, Haidl G, Link K, Behre HM, Goulis DG, Krausz C, Giwercman A (2018) European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology 6:513–524

    Article  CAS  PubMed  Google Scholar 

  23. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179

    Article  CAS  PubMed  Google Scholar 

  24. Cissen M, Wely MV, Scholten I, Mansell S, Bruin JP, Mol BW, Braat D, Repping S, Hamer G (2016) Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS ONE 11:e165125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT (2017) A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 19:80–90

    PubMed  Google Scholar 

  26. Santi D, Spaggiari G, Simoni M (2018) Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management—meta-analyses. Reprod Biomed Online 37:315–326

    Article  CAS  PubMed  Google Scholar 

  27. Esteves SC (2018) Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: Yes. Int Braz J Urol 44:667–675

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sigman M (2018) Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: No. Int Braz J Urol 44:676–679

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lopes LS, Esteves SC (2019) Testicular sperm for intracytoplasmic sperm injection in non-azoospermic men: a paradigm shift. Panminerva Med 61:178–186

    Article  PubMed  Google Scholar 

  30. Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Abu Hmeidan F, Glander HJ, Paasch U (2009) Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril 92:572–577

    Article  PubMed  Google Scholar 

  31. Said TM, Grunewald S, Paasch U, Glander H‑J, Baumann T, Kriegel C, Li L, Agarwal A (2005) Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online 10:740–746

    Article  PubMed  Google Scholar 

  32. Nadalini M, Tarozzi N, Di Santo M, Borini A (2014) Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better than the traditional one? J Assist Reprod Genet 31:1045–1051

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dirican EK, Ozgun OD, Akarsu S, Akin KO, Ercan O, Ugurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A (2008) Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 25:375–381

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gil M, Sar-Shalom V, Melendez Sivira Y, Carreras R, Checa MA (2013) Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet 30:479–485

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L (2003) Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril 79(Suppl 3):1616–1624

    Article  PubMed  Google Scholar 

  36. Jakab A, Sakkas D, Delpiano E, Cayli S, Kovanci E, Ward D, Revelli A, Huszar G (2005) Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril 84:1665–1673

    Article  PubMed  Google Scholar 

  37. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Taraborrelli S, Arnone A, Maccarini AM, Filicori M (2012) Comparison of two ready-to-use systems designed for sperm-hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. Sperm Slow: a prospective, randomized trial. Fertil Steril 98:632–637

    Article  PubMed  Google Scholar 

  38. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J (2013) Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod 28:306–314

    Article  CAS  PubMed  Google Scholar 

  39. Miller D, Pavitt S, Sharma V, Forbes G, Hooper R, Bhattacharya S, Kirkman-Brown J, Coomarasamy A, Lewis S, Cutting R, Brison D, Pacey A, West R, Brian K, Griffin D, Khalaf Y (2019) Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. Lancet 393:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Avalos-Durán G, Cañedo-Del Ángel AME, Rivero-Murillo J, Zambrano-Guerrero JE, Carballo-Mondragón E, Checa-Vizcaíno MÁ (2018) Physiological ICSI (PICSI) vs. conventional ICSI in couples with Male factor: a systematic review. JBRA Assist Reprod 22:139–147

    PubMed  PubMed Central  Google Scholar 

  41. Kläver R, Gromoll J (2014) Bringing epigenetics into the diagnostics of the andrology laboratory: challenges and perspectives. Asian J Androl 16:669–674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Laurentino S, Borgmann J, Gromoll J (2016) On the origin of sperm epigenetic heterogeneity. Reproduction 151:R71–R78

    Article  CAS  PubMed  Google Scholar 

  43. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, Oehninger S (2009) Developmental sperm contributions: fertilization and beyond. Fertil Steril 92:835–848

    Article  CAS  PubMed  Google Scholar 

  44. Gianaroli L, Magli MC, Ferraretti AP, Crippa A, Lappi M, Capitani S, Baccetti B (2010) Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil Steril 93:807–813

    Article  PubMed  Google Scholar 

  45. Henkel R, Maaß G, Bödeker R‑H, Scheibelhut C, Stalf T, Mehnert C, Schuppe H‑C, Jung A, Schill W‑B (2005) Sperm function and assisted reproduction technology. Reprod Med Biol 4:7–30

    PubMed  PubMed Central  Google Scholar 

  46. de Liu Y, Liu ML, Garrett C, Baker HW (2007) Comparison of the frequency of defective sperm-zona pellucida (ZP) binding and the ZP-induced acrosome reaction between subfertile men with normal and abnormal semen. Hum Reprod 22:1878–1884

    Article  PubMed  Google Scholar 

  47. Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471:387–391

    Article  CAS  PubMed  Google Scholar 

  48. Brenker C, Rehfeld A, Schiffer C, Kierzek M, Kaupp UB, Skakkebæk NE, Strünker T (2018) Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Hum Reprod 33:1915–1923

    Article  CAS  PubMed  Google Scholar 

  49. Kızılay F, Altay B (2017) Sperm function tests in clinical practice. Turk J Urol 43:393–400

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261–2270

    Article  CAS  PubMed  Google Scholar 

  51. Chan PJ, Jacobson JD, Corselli JU, Patton WC (2006) A simple zeta method for sperm selection based on membrane charge. Fertil Steril 85:481–486

    Article  CAS  PubMed  Google Scholar 

  52. Simon L, Ge SQ, Carrell DT (2013) Sperm selection based on electrostatic charge. Methods Mol Biol 927:269–278

    Article  CAS  PubMed  Google Scholar 

  53. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y (2002) Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl 23:1–8

    Article  PubMed  Google Scholar 

  54. Berkovitz A, Eltes F, Yaari S, Katz N, Barr I, Fishman A, Bartoov B (2005) The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod 20:185–190

    Article  PubMed  Google Scholar 

  55. De Vos A, Van de Velde H, Bocken G, Eylenbosch G, Franceus N, Meersdom G, Tistaert S, Vankelecom A, Tournaye H, Verheyen G (2013) Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum Reprod 28:617–626

    Article  PubMed  CAS  Google Scholar 

  56. Teixeira DM, Barbosa MA, Ferriani RA, Navarro PA, Raine-Fenning N, Nastri CO, Martins WP (2013) Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010167.pub2

    Article  PubMed  Google Scholar 

  57. Gaspard O, Vanderzwalmen P, Wirleitner B, Ravet S, Wenders F, Eichel V, Mocková A, Spitzer D, Jouan C, Gridelet V, Martens H, Henry L, Zech H, d’Hauterive SP, Nisolle M (2018) Impact of high magnification sperm selection on neonatal outcomes: a retrospective study. J Assist Reprod Genet 35:1113–1121

    Article  PubMed  PubMed Central  Google Scholar 

  58. Montag M, Schwarz C, Köster M, van der Ven K, van der Ven H (2009) IMSI (intracytoplasmic morphologically selected sperm injection): Therapieoptimierung bei ausgeprägter Störung der Spermatogene? J Reproduktionsmed Endokrinol 6:153–155

    Google Scholar 

  59. Mallidis C, Sanchez V, Wistuba J, Wuebbeling F, Burger M, Fallnich C, Schlatt S (2014) Raman microspectroscopy: shining a new light on reproductive medicine. Hum Reprod Update 20:403–414

    Article  CAS  PubMed  Google Scholar 

  60. Le Gac S, Nordhoff V (2017) Microfluidics for mammalian embryo culture and selection: where do we stand now? Mol Hum Reprod 23:213–226

    PubMed  Google Scholar 

  61. Knowlton SM, Sadasivam M, Tasoglu S (2015) Microfluidics for sperm research. Trends Biotechnol 33:221–229

    Article  CAS  PubMed  Google Scholar 

  62. Zaferani M, Cheong SH, Abbaspourrad A (2018) Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci USA 115:8272–8277

    Article  CAS  PubMed  Google Scholar 

  63. Ko YJ, Maeng JH, Hwang SY, Ahn Y (2018) Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol 23:507–515

    PubMed  Google Scholar 

  64. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A (2018) Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 8:2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kaupp UB, Strünker T (2017) Signaling in sperm: more different than similar. Trends Cell Biol 27:101–109

    Article  CAS  PubMed  Google Scholar 

  66. Schuppe HC, Köhn FM, Weidner W (2013) Andrologie in der interdisziplinären Reproduktionsmedizin. In: Diedrich, Ludwig, Griesinger (Hrsg) Reproduktionsmedizin. Springer, Berlin, Heidelberg

    Google Scholar 

  67. Nordhoff V, Kliesch S (2017) Sperm preparation for therapeutic IVF. In: Montag MHM, Morbeck DE (Hrsg) Principles of IVF laboratory practice. Optimizing performance and outcomes. University Press, Cambridge, S 97–105

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Nordhoff.

Ethics declarations

Interessenkonflikt

V. Nordhoff und S. Kliesch geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H.-C. Schuppe, Gießen

F.-M. Köhn, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordhoff, V., Kliesch, S. Das eine unter vielen – Spermienqualität und Möglichkeiten der Selektion. Gynäkologische Endokrinologie 17, 250–256 (2019). https://doi.org/10.1007/s10304-019-00274-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-019-00274-1

Schlüsselwörter

Keywords

Navigation