Skip to main content

Advertisement

Log in

The role of gut microbiota in the pathogenesis of rheumatic diseases

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatic diseases refer to many diseases with a loss of immune self-tolerance, leading to a chronic inflammation, degeneration, or metabolic derangement in multiple organs or tissues. The cause of rheumatic diseases remains to be elucidated, though both environmental and genetic factors are required for the development of rheumatic diseases. Over the past decades, emerging studies suggested that alteration of intestinal microbiota, known as gut dysbiosis, contributed to the occurrence or development of a range of rheumatic diseases, including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, and Sjogren’s syndrome, through profoundly affecting the balance between pro- and anti-inflammatory immune responses. In this article, we discussed the role of gut microbiota in the pathogenesis of rheumatic diseases based on a large number of experimental and clinical materials, thereby providing a new insight for microbiota-targeted therapies to prevent or cure rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kverka M, Tlaskalova-Hogenova H (2017) Intestinal microbiota: facts and fiction. Dig Dis 35:139–147

    Article  PubMed  Google Scholar 

  3. Koboziev I, Reinoso WC, Furr KL, Grisham MB (2014) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 68:122–133

    Article  CAS  PubMed  Google Scholar 

  4. Rajilic-Stojanovic M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clooney AG, Fouhy F, Sleator RD, O' Driscoll A, Stanton C, Cotter PD et al (2016) Comparing apples and oranges?: next generation sequencing and its impact on microbiome analysis. PLoS One. https://doi.org/10.1371/journal.pone.0148028

  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  8. Sparks JA, Costenbader KH (2014) Genetics, environment, and gene-environment interactions in the development of systemic rheumatic diseases. Rheum Dis Clin N Am 40:637–657

    Article  Google Scholar 

  9. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci 107:18933–18938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizuno M, Noto D, Kaga N, Chiba A, Miyake S (2017) The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One. https://doi.org/10.1371/journal.pone.0173032

  11. Amarilyo G, Lourenco EV, Shi FD, La Cava A (2014) IL-17 promotes murine lupus. J Immunol 193:540–543

    Article  CAS  PubMed  Google Scholar 

  12. Chen DY, Chen YM, Wen MC, Hsieh TY, Hung WT, Lan JL (2012) The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus 21:1385–1396

    Article  PubMed  Google Scholar 

  13. Gomez A, Luckey D, Yeoman CJ, Marietta EV, Berg Miller ME, Murray JA et al (2012) Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS One. https://doi.org/10.1371/journal

  14. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via Th17 cells. Immunity 32:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flannigan KL, Ngo VL, Geem D, Harusato A, Hirota SA, Parkos CA et al (2016) IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol. https://doi.org/10.1038/mi.2016.80

  16. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  17. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, DeRoos P et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  19. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  21. Proal AD, Lindseth IA, Marshall TG (2017) Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Disco Med 23:51–60

    Google Scholar 

  22. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J et al (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H et al (2016) Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep 6:30594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Zou Q, Zeng B, Fang Y, Wei H (2013) Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol 67:170–176

    Article  CAS  PubMed  Google Scholar 

  25. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife. https://doi.org/10.7554/eLife.01202

  26. Gul'neva MI, Noskov SM (2011) Colonic microbial biocenosis in rheumatoid arthritis. Klin Med (Mosk) 89:45–48

    Google Scholar 

  27. Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35:1500–1505

    CAS  PubMed  Google Scholar 

  28. Eerola E, Möttönen T, Hannonen P, Luukkainen R, Kantola I, Vuori K et al (1990) Intestinal anaerobic bacteria in early rheumatoid arthritis (RA). Br J Rheumatol 33:1030–1038

    Article  Google Scholar 

  29. Severijnen AJ, Kool J, Swaak AJ, Hazenberg MP (1990) Intestinal flora of patients with rheumatoid arthritis: induction of chronic arthritis in rats by cell wall fragments from isolated Eubacterium aerofaciens strains. Br J Rheumatol 29:433–439

    Article  CAS  PubMed  Google Scholar 

  30. Olhagen B, Månsson I (1968) Intestinal Clostridium perfringens in rheumatoid arthritis and other collagen diseases. Acta Med Scand 184:395–402

    Article  CAS  PubMed  Google Scholar 

  31. He Z, Shao T, Li H, Xie Z, Wen C (2016) Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog 8:64

    PubMed  PubMed Central  Google Scholar 

  32. Johnson BM, Gaudreau MC, Al-Gadban MM, Gudi R, Vasu C (2015) Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol 181:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Liao X, Sparks JB, Luo XM (2014) Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol 80:7551–7560

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hevia A, Milani C, Lopez P, Cuervo A, Arboleya S, Duranti S et al (2014) Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5:e1514–e1548

    Article  Google Scholar 

  35. Mehta HE, Goulet PO, Mashiko S, Desjardins J, Pérez G, Koenig M et al (2017) Early life antibiotic exposure causes intestinal dysbiosis and exacerbates skin and lung pathology in experimental systemic sclerosis. J Invest Dermatol. https://doi.org/10.1016/j.jid.2017.06.019

  36. Andreasson K, Alrawi Z, Persson A, Jonsson G, Marsal J (2016) Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther 18:278

    Article  PubMed  PubMed Central  Google Scholar 

  37. Volkmann ER, Chang YL, Barroso N, Furst DE, Clements PJ, Gorn AH et al (2016) Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol 68:1483–1492

    Article  PubMed  PubMed Central  Google Scholar 

  38. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B et al (2014) Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 67:686–691

    Article  Google Scholar 

  39. Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P et al (2014) HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9:e105684

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H et al (2002) Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford) 41:1395–1401

    Article  CAS  Google Scholar 

  41. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL et al (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180:2359–2364

    Article  CAS  PubMed  Google Scholar 

  42. de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S et al (2016) Altered mucosal microbiome diversity and disease severity in Sjogren syndrome. Sci Rep 6:23561

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038

    Article  CAS  PubMed  Google Scholar 

  44. Bessis N, Decker P, Assier E, Semerano L, Boissier MC (2017) Arthritis models: usefulness and interpretation. Semin Immunopathol 39:469–486

    Article  CAS  PubMed  Google Scholar 

  45. Trentham DE, Townes AS, Kang AH (1977) Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146:857–868

    Article  CAS  PubMed  Google Scholar 

  46. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR et al (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118:205–216

    Article  CAS  PubMed  Google Scholar 

  47. Wu W, Liu HP, Chen F, Liu H, Cao AT, Yao S et al (2016) Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-beta production. Eur J Immunol 46:1162–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Zhang J, Zou Q, Zhong B, Wang H, Mou F et al (2016) Lactobacillus salivarius isolated from patients with rheumatoid arthritis suppresses collagen-induced arthritis and increases Treg frequency in mice. J Interf Cytokine Res 36:706–712

    Article  CAS  Google Scholar 

  49. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D et al (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895–905

    Article  CAS  PubMed  Google Scholar 

  51. Brisbin JT, Gong J, Parvizi P, Sharif S (2010) Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin Vaccin Immunol 17:1337–1343

    Article  CAS  Google Scholar 

  52. Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16:195–200

    Article  PubMed  Google Scholar 

  53. Lee JM, Hwang KT, Jun WJ, Park CS, Lee MY (2008) Anti-inflammatory effect of lactic acid bacteria: inhibition of cyclooxygenase-2 by suppressing nuclear factor-kappaB in Raw264.7 macrophage cells. J Microbiol Biotechnol 18:1683–1688

    CAS  PubMed  Google Scholar 

  54. Lee JH, Valeriano VD, Shin YR, Chae JP, Kim GB, Ham JS et al (2012) Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J Bacteriol 194:4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi M, Zavvari S (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30:430–435

    Article  CAS  PubMed  Google Scholar 

  56. Pineda ML, Thompson SF, Summers K, de Leon F, Pope J, Reid G (2011) A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit 17:R347–R354

    Google Scholar 

  57. Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A (2011) Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: lactobacillus casei: COX-2 inhibitor. J Clin Immunol 31:147–154

    Article  PubMed  Google Scholar 

  58. Costa-Reis P, Sullivan KE (2013) Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep 15:369

    Article  PubMed  Google Scholar 

  59. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  60. Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A et al (2015) Commensal microbiota influence systemic autoimmune responses. EMBO J 34:466–474

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL et al (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 302:G1405–G1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A et al (2016) Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 6:24072

    Article  PubMed  PubMed Central  Google Scholar 

  63. Volkmann ER, Hoffmann-Vold AM, Chang YL, Jacobs JP, Tillisch K, Mayer EA et al (2017) Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. https://doi.org/10.1136/bmjgast-2017-000134

  64. Frech TM, Khanna D, Maranian P, Frech EJ, Sawitzke AD, Murtaugh MA (2011) Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention. Clin Exp Rheumatol 29:S22–S25

    PubMed  Google Scholar 

  65. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TJ, Balish E et al (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 98:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Asquith MJ, Stauffer P, Davin S, Mitchell C, Lin P, Rosenbaum JT (2016) Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol 68:2151–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luckey D, Gomez A, Murray J, White B, Taneja V (2013) Bugs & us: the role of the gut in autoimmunity. Indian J Med Res 138:732–743

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dominguez-Lopez ML, Burgos-Vargas R, Galicia-Serrano H, Bonilla-Sanchez MT, Rangel-Acosta HH, Cancino-Diaz ME et al (2002) IgG antibodies to enterobacteria 60 kDa heat shock proteins in the sera of HLA-B27 positive ankylosing spondylitis patients. Scandinavian J Rheumatol 31:260–265

    Article  CAS  Google Scholar 

  69. Montoya J, Matta NB, Suchon P, Guzian MC, Lambert NC, Mattei JP et al (2016) Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case-control retrospective study. Ann Rheum Dis 75:879–882

    Article  CAS  PubMed  Google Scholar 

  70. Mavragani CP, Moutsopoulos HM (2014) Sjogren's syndrome. Annu Rev Pathol 9:273–285

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D., Wu, C., Zeng, X. et al. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol 37, 25–34 (2018). https://doi.org/10.1007/s10067-017-3821-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3821-4

Keywords

Navigation