Skip to main content

Advertisement

Log in

Utility of bedside artificial pancreas for postoperative glycemic control in cardiac surgery

  • Original Article
  • Artificial Liver, Pancreas
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Perioperative hyperglycemia, hypoglycemia, and high glycemic variability are independent risk factors for mortality in critically ill patients. After cardiac surgery, intensive glycemic control without hypoglycemia may help to reduce the number of adverse events; however, postoperative glycemic control is difficult in many cases. In this study, we investigated whether the bedside artificial pancreas STG-55 is useful for postoperative glycemic control in cardiac surgery. Methods: In the present single-center retrospective study, we analyzed arterial blood glucose levels for 15 h after surgery in 69 patients treated using the bedside artificial pancreas and in 160 patients treated with continuous intravenous insulin infusion using a scale that adjusts for current blood glucose level, glycemic fluctuation, and insulin dose. Results: Hypoglycemia (arterial blood glucose level < 70 mg/dL) was not observed in any case. Patients in the group treated using the bedside artificial pancreas showed lower mean, maximum, and minimum blood glucose levels and glycemic variability and shorter treatment duration in the intensive care unit than patients treated with continuous intravenous insulin infusion. Notably, these results were not affected by diabetes status or differences in operative procedures. Analysis of patients undergoing isolated coronary artery bypass grafting surgery revealed that the incidence of surgical site complications composite with infection and dehiscence was lower. Conclusions: In cardiac surgery, postoperative treatment using bedside artificial pancreas is a novel therapy that improves hyperglycemia and glycemic variability, without hypoglycemia, and is, therefore, an attractive strategy for future surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–8.

    Article  Google Scholar 

  2. Farrokhi F, Smiley D, Umpierrez GE. Glycemic control in non-diabetic critically ill patients. Best Pract Res Clin Endocrinol Metab. 2011;25:813–24.

    Article  CAS  Google Scholar 

  3. Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the surgical care and outcomes assessment program. Ann Surg. 2013;257:8–14.

    Article  Google Scholar 

  4. Kotagal M, Symons RG, Hirsch IB, Umpierrez GE, Dellinger EP, Farrokhi ET, Flum DR. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. Ann Surg. 2015;261:97–103.

    Article  Google Scholar 

  5. Van Den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  Google Scholar 

  6. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  CAS  Google Scholar 

  7. Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, Iapichino G, Leverve X, Nitenberg G, Singer P, Wernerman J. A prospective randomised multi–centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the glucontrol study. Intensive Care Med. 2009;35:1738–48.

    Article  CAS  Google Scholar 

  8. NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  Google Scholar 

  9. NICE-SUGAR Study Investigators. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.

    Article  Google Scholar 

  10. American Diabetes Association. Diabetes care in the hospital: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:193–202.

    Article  Google Scholar 

  11. Ban KA, Minei JP, Laronga C, Harbrecht BG, Jensen EH, Fry DE, Itani KM, Dellinger EP, Ko CY, Duane TM. American college of surgeons and surgical infection society: surgical site infection guidelines, 2016 update. J Am Coll Surg. 2017;224:59–74.

    Article  Google Scholar 

  12. Kawahito S, Kitahata H, Kitagawa T, Oshita S. Intensive insulin therapy during cardiovascular surgery. J Med Invest. 2010;57:191–204.

    Article  Google Scholar 

  13. Tsukamoto Y, Kinoshita Y, Kitagawa H, Munekage M, Munekage E, Takezaki Y, Yatabe T, Yamashita K, Yamazaki R, Okabayashi T, Tarumi M. Evaluation of a novel artificial pancreas: closed loop glycemic control system with continuous blood glucose monitoring. Artif Organs. 2013;37:67–73.

    Article  Google Scholar 

  14. Kawamori R, Shichiri M, Goriya Y, Yamasaki Y, Shigeta Y, Abe H. Importance of insulin secretion based on the rate of change in blood glucose concentration in glucose tolerance, assessed by the artificial beta cell. Acta Endocrinol. 1978;87:339–51.

    Article  CAS  Google Scholar 

  15. Okabayashi T, Nishimori I, Maeda H, Yamashita K, Yatabe T, Hanazaki K. Effect of intensive insulin therapy using a closed-loop glycemic control system in hepatic resection patients: a prospective randomized clinical trial. Diabetes Care. 2009;32:1425–7.

    Article  CAS  Google Scholar 

  16. Okabayashi T, Nishimori I, Yamashita K, Sugimoto T, Maeda H, Yatabe T, Kohsaki T, Kobayashi M, Hanazaki K. Continuous postoperative blood glucose monitoring and control by artificial pancreas in patients having pancreatic resection: a prospective randomized clinical trial. Arch Surg. 2009;144:933–7.

    Article  Google Scholar 

  17. Stahle E, Tammelin A, Bergstrom R, Hambreus A, Nystrom SO, Hansson HE. Sternal wound complications-incidence, microbiology and risk factors. Eur J Cardiothorac Surg. 1997;11:1146–53.

    Article  CAS  Google Scholar 

  18. van den Boom W, Schroeder RA, Manning MW, Setji TL, Fiestan GO, Dunson DB. Effect of A1C and glucose on postoperative mortality in noncardiac and cardiac surgeries. Diabetes Care. 2018;41:782–8.

    Article  Google Scholar 

  19. Knapik P, Nadziakiewicz P, Urbanska E, Saucha W, Herdynska M, Zembala M. Cardiopulmonary bypass increases postoperative glycemia and insulin consumption after coronary surgery. Ann Thorac Surg. 2009;87:1859–65.

    Article  Google Scholar 

  20. Kawahito K, Sato H, Kadosaki M, Egawa A, Misawa Y. Spike in glucose levels after reperfusion during aortic surgery: assessment by continuous blood glucose monitoring using artificial endocrine pancreas. Gen Thorac Cardiovasc Surg. 2018;66:150–4.

    Article  Google Scholar 

  21. McAlister FA, Man J, Bistritz L, Amad H, Tandon P. Diabetes and coronary artery bypass surgery: an examination of perioperative glycemic control and outcomes. Diabetes Care. 2003;26:1518–24.

    Article  Google Scholar 

  22. Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, Newton CA, Smiley-Byrd D, Vellanki P, Halkos M, Puskas JD. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG Trial. Diabetes Care. 2015;38:1665–72.

    Article  CAS  Google Scholar 

  23. Mackenzie IMJ, Whitehouse T, Nightingale PG. The metrics of glycaemic control in critical care. Intensive Care Med. 2011;37:435–43.

    Article  CAS  Google Scholar 

  24. Scott MJ, Miller TE. Pathophysiology of major surgery and the role of enhanced recovery pathways and the anesthesiologist to improve outcomes. Anesthesiol Clin. 2015;33:79–91.

    Article  Google Scholar 

  25. Engelman DT, Ali WB, Williams JB, Perrault LP, Reddy VS, Arora RC, Roselli EE, Khoynezhad A, Gerdisch M, Levy JH, Lobdell K. Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations. JAMA Surg. 2019;154:755–66.

    Article  Google Scholar 

  26. Li M, Zhang J, Gan TJ, Qin G, Wang L, Zhu M, Zhang Z, Pan Y, Ye Z, Zhang F, Chen X. Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: a randomized clinical trial. Eur J Cardiothorac Surg. 2018;54:491–7.

    Article  Google Scholar 

  27. Trivedi V, Bleeker H, Kantor N, Visintini S, McIsaac DI, McDonald B. Survival, quality of life, and functional status following prolonged ICU stay in cardiac surgical patients: a systematic review. Crit Care Med. 2019;47:52–63.

    Article  Google Scholar 

  28. Hanazaki K, Kitagawa H, Yatabe T, Munekage M, Dabanaka K, Takezaki Y, Tsukamoto Y, Asano T, Kinoshita Y, Namikawa T. Perioperative intensive insulin therapy using an artificial endocrine pancreas with closed-loop glycemic control system: the effects of no hypoglycemia. Am J Surg. 2014;207:935–41.

    Article  Google Scholar 

  29. Mibu K, Yatabe T, Hanazaki K. Blood glucose control using an artificial pancreas reduces the workload of ICU Nurses. J Artif Organs. 2012;15:71–6.

    Article  Google Scholar 

  30. Nygren JO, Thorell A, Soop M, Efendic S, Brismar K, Karpe F, Nair KS, Ljungqvist O. Perioperative insulin and glucose infusion maintains normal insulin sensitivity after surgery. Am J Physiol. 1998;275:140–8.

    Google Scholar 

  31. Hatzakorzian R, Shum-Tim D, Wykes L, Hülshoff A, Bui H, Nitschmann E, Lattermann R, Schricker T. Glucose and insulin administration while maintaining normoglycemia inhibits whole body protein breakdown and synthesis after cardiac surgery. J Appl Physiol. 2014;117:1380–7.

    Article  CAS  Google Scholar 

  32. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14:29–34.

    Article  CAS  Google Scholar 

  33. Visser L, Zuurbier CJ, Hoek FJ, Opmeer BC, De Jonge E, De Mol BA, Van Wezel HB. Glucose, insulin and potassium applied as perioperative hyperinsulinaemic normoglycaemic clamp: effects on inflammatory response during coronary artery surgery. Br J Anaesth. 2005;95:448–57.

    Article  CAS  Google Scholar 

  34. Akabori H, Tani M, Kitamura N, Maehira H, Imashuku Y, Tsujita Y, Shimizu T, Kitagawa H, Eguchi Y. Perioperative tight glycemic control using artificial pancreas decreases infectious complications via suppression of inflammatory cytokines in patients who underwent pancreaticoduodenectomy: a prospective, non-randomized clinical trial. Am J Surg. 2020;220:365–71.

    Article  Google Scholar 

Download references

Acknowledgements

This study has received no specific grants from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Urai Shin or Ohara Takeshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, U., Naoko, H., Michinori, T. et al. Utility of bedside artificial pancreas for postoperative glycemic control in cardiac surgery. J Artif Organs 24, 225–233 (2021). https://doi.org/10.1007/s10047-020-01223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-020-01223-7

Keywords

Navigation