Skip to main content

Advertisement

Log in

The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Glucocorticoids are considered the most powerful anti-inflammatory and immunomodulating drugs. However, a number of side-effects are well documented in different diseases, including articular cartilage, where increases or decreases in the synthesis of hormone-dependent extracellular matrix components are seen. The objective of this study has been to test the effects of procedures or drugs affecting bone metabolism on articular cartilage in rats with prednisolone-induced osteoporosis and to evaluate the outcomes of physical activity with treadmill and vibration platform training on articular cartilage. The animals were divided into 5 groups, and bone and cartilage evaluations were performed using whole-body scans and histomorphometric analysis. Lubricin and caspase-3 expression were evaluated by immunohistochemistry, Western blot analysis and biochemical analysis. These results confirm the beneficial effect of physical activity on the articular cartilage. The effects of drug therapy with glucocorticoids decrease the expression of lubricin and increase the expression of caspase-3 in the rats, while after physical activity the values return to normal compared to the control group. Our findings suggest that it might be possible that mechanical stimulation in the articular cartilage could induce the expression of lubricin, which is capable of inhibiting caspase-3 activity, preventing chondrocyte death. We can assume that the physiologic balance between lubricin and caspase-3 could maintain the integrity of cartilage. Therefore, in certain diseases such as osteoporosis, mechanical stimulation could be a possible therapeutic treatment. With our results we can propose the hypothesis that physical activity could also be used as a therapeutic treatment for cartilage disease such as osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Z, Jin W, Beckett J, Otto T, Moed B (2011) A proteomic approach for identification and localization of the pericellular components of chondrocytes. Histochem Cell Biol 136:153–162

    Article  PubMed  CAS  Google Scholar 

  2. Buckwalter JA, Lane NE (1997) Athletics and osteoarthritis. Am J Sports Med 25:873–881

    Article  PubMed  CAS  Google Scholar 

  3. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–466

    PubMed  CAS  Google Scholar 

  4. Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC (2011) Glucocorticoids and tumor necrosis factor α increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem 286:44326–44335

    Article  PubMed  CAS  Google Scholar 

  5. Goodnough LH, Chang AT, Treloar C, Yang J, Scacheri PC, Atit RP (2012) Twist1 mediates repression of chondrogenesis by β-catenin to promote cranial bone progenitor specification. Development 139:4428–4438

    Article  PubMed  CAS  Google Scholar 

  6. Ohnaka K, Taniguchi H, Kawate H, Nawata H, Takayanagi R (2004) Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun 318:259–264

    Article  PubMed  CAS  Google Scholar 

  7. Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R (2005) Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329:177–181

    Article  PubMed  CAS  Google Scholar 

  8. Pervaiz K, Cabezas A, Downes K, Santoni BG, Frankle MA (2012) Osteoporosis and shoulder osteoarthritis: incidence, risk factors, and surgical implications. J Shoulder Elbow Surg (in press)

  9. Rubinacci A, Tresoldi D, Scalco E, Villa I, Adorni F, Moro GL, Fraschini GF, Rizzo G (2012) Comparative high-resolution pQCT analysis of femoral neck indicates different bone mass distribution in osteoporosis and osteoarthritis. Osteoporos Int 23:1967–1975

    Article  PubMed  CAS  Google Scholar 

  10. Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Calvo E, Largo R, Herrero-Beaumont G (2011) Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage 19:1228–1236

    Article  PubMed  CAS  Google Scholar 

  11. Musumeci G, Loreto C, Carnazza ML, Martinez G (2011) Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19:307–313

    Article  PubMed  Google Scholar 

  12. Musumeci G, Loreto C, Carnazza ML, Strehin I, Elisseeff J (2011) OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol Histopathol 26:1265–1278

    PubMed  CAS  Google Scholar 

  13. Loreto C, Musumeci G, Leonardi R (2009) Chondrocyte-like apoptosis in temporomandibular joint disc internal derangement as a repair-limiting mechanism. An in vivo study. Histol Histopathol 24:293–298

    PubMed  CAS  Google Scholar 

  14. Cardile V, Musumeci G, Sicurezza E, Caggia S, Rusu MC, Leonardi R, Loreto C (2012) TRAIL and its receptors DR5 and DcR2 expression, in Orthodontic Tooth Movement. Histol Histopathol (in press)

  15. Caltabiano R, Leonardi R, Musumeci G, Bartoloni G, Rusu MC, Almeida LE, Loreto C (2012) Apoptosis in temporomandibular joint disc with internal derangement involves mitochondrial-dependent pathways. An in vivo study. Acta Odontol Scand (in press)

  16. Musumeci G, Lo Furno D, Loreto C, Giuffrida R, Caggia S, Leonardi R, Cardile V (2011) Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp Biol Med 236:1333–1341

    Article  CAS  Google Scholar 

  17. Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R (2011) Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem 55:e31

    Article  PubMed  CAS  Google Scholar 

  18. Schumacher BL, Hughes CE, Kuettner KE, Caterson B, Aydelotte MB (1999) Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res 17:110–120

    Article  PubMed  CAS  Google Scholar 

  19. Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152

    Article  PubMed  CAS  Google Scholar 

  20. Schumacher BL, Schmidt TA, Voegtline MS, Chen AC, Sah RL (2005) Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. J Orthop Res 23:562–568

    Article  PubMed  CAS  Google Scholar 

  21. Musumeci G, Loreto C, Carnazza ML, Cardile V, Leonardi R (2012) Acute injury affects lubricin expression in knee menisci. An immunohistochemical study. Ann Anat (in press)

  22. Leonardi R, Rusu MC, Loreto F, Loreto C, Musumeci G (2011) Immunolocalization and expression of lubricin in the bilaminar zone of the human temporomandibular joint disc. Acta Histochem 114:1–5

    Article  PubMed  Google Scholar 

  23. Leonardi R, Musumeci G, Sicurezza E, Loreto C (2012) Lubricin in human temporomandibular joint disc: an immunohistochemical study. Arch Oral Biol 57:614–619

    Article  PubMed  CAS  Google Scholar 

  24. Leonardi R, Loreto C, Talic N, Caltabiano R, Musumeci G (2012) Immunolocalization of lubricin in the rat periodontal ligament during experimental tooth movement. Acta Histochem 114:700–704

    Article  PubMed  CAS  Google Scholar 

  25. Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ (2009) Boundary mode lubrication of articular cartilage by recombinant human lubricin. J Orthop Res 27:771–777

    Article  PubMed  CAS  Google Scholar 

  26. Rhee DK, Marcelino J, Brown M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted protein lubricin protects cartilage surfaces and inhibits synovial cell adhesion. J Clin Invest 115:622–631

    PubMed  CAS  Google Scholar 

  27. Jay GD, Torres JR, Rhee DK, Helminen HJ, Cha CJ, Elsaid KA, Kim KS, Cui Y, Warman ML (2009) Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56:3662–3669

    Article  Google Scholar 

  28. Bao JP, Chen WP, Wu LD (2011) Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep 38:2879–2885

    Article  PubMed  CAS  Google Scholar 

  29. Flannery CR, Zollner R, Corcoran C, Jones AR, Root A, Rivera-Bermúdez MA, Blanchet T, Gleghorn JP, Bonassar LJ, Bendele AM, Morris EA, Glasson SS (2009) Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum 60:840–847

    Article  PubMed  CAS  Google Scholar 

  30. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  31. Loreto C, Musumeci G, Castorina A, Loreto C, Martines G (2011) Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodelling, vimentin-positive cells and cell death. Ann Anat 193:156–162

    Article  PubMed  CAS  Google Scholar 

  32. Catenacci VA, Wyatt HR (2007) The role of physical activity in producing and maintaining weight loss. Nat Clin Pract Endocrinol Metab 3:518–529

    Article  PubMed  Google Scholar 

  33. Rizzoli R, Bruyere O, Cannata-Andia JB, Devogelaer JP, Lyritis G, Ringe JD, Vellas B, Reginster JY (2009) Management of osteoporosis in the elderly. Curr Med Res Opin 25:2373–2387

    Article  PubMed  CAS  Google Scholar 

  34. Kenny AM, Smith J, Noteroglu E, Waynik IY, Ellis C, Kleppinger A, Annis K, Dauser D, Walsh S (2009) Osteoporosis risk in frail older adults in assisted living. J Am Geriatr Soc 57:76–81

    Article  PubMed  Google Scholar 

  35. Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229

    Article  PubMed  CAS  Google Scholar 

  36. Rubin C, Turner AS, Muller R, Mittra E, McLeod K, Lin W, Qin XY (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357

    Article  PubMed  Google Scholar 

  37. Cardinale M, Rittweger J (2006) Vibration exercise makes your muscles and bones stronger: fact or fiction? J Br Menopause Soc 12:12–18

    Article  PubMed  Google Scholar 

  38. Lane NE (2001) An update on glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am 27:235–253

    Article  PubMed  CAS  Google Scholar 

  39. Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  PubMed  CAS  Google Scholar 

  40. Folwarczna J, Pytlik M, Sliwinski L, Cegiela U, Nowinska B, Rajda M (2011) Effects of propranolol on the development of glucocorticoid-induced osteoporosis in male rats. Pharmacol Rep 63:1040–1049

    PubMed  CAS  Google Scholar 

  41. Maddalozzo GF, Iwaniec UT, Turner RT, Rosen CJ, Widrick JJ (2008) Whole-body vibration slows the acquisition of fat in mature female rats. Int J Obes (Lond) 32:1348–1354

    Article  CAS  Google Scholar 

  42. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg 53:523–537

    PubMed  CAS  Google Scholar 

  43. Kraus VB, Huebner JL, Stabler T, Flahiff CM, Setton LA, Fink C, Vilim V, Clark AG (2004) Ascorbic acid increase the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum 50:1822–1831

    Article  PubMed  CAS  Google Scholar 

  44. Musumeci G, Loreto C, Clementi G, Fiore CE, Martinez G (2011) An in vivo experimental study on osteopenia in diabetic rats. Acta Histochem 113:619–625

    Article  PubMed  CAS  Google Scholar 

  45. Musumeci G, Carnazza ML, Leonardi R, Loreto C (2012) Expression of β-Defensin-4 in ‘an in vivo and ex vivo model’ of human osteoarthritic knee meniscus. Knee Surg Sports Traumatol Arthrosc 20:216–222

    Article  PubMed  Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  47. Canalis E, Bilezikian JP, Angeli A, Giustina A (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34:593–598

    Article  PubMed  CAS  Google Scholar 

  48. Chrysis D, Zaman F, Chagin AS, Takigawa M, Savendahl L (2005) Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3′-kinase signaling pathway. Endocrinology 146:1391–1397

    Article  PubMed  CAS  Google Scholar 

  49. Farkas B, Kvell K, Czompoly T, Illes T, Bardos T (2010) Increased chondrocyte death after steroid and local anesthetic combination. Clin Orthop Relat Res 468:3112–3120

    Article  PubMed  Google Scholar 

  50. Hossain MA, Park J, Choi SH, Kim G (2008) Dexamethasone induces apoptosis in proliferative canine tendon cells and chondrocytes. Vet Comp Orthop Traumatol 21:337–342

    PubMed  CAS  Google Scholar 

  51. Ozbey O, Sahin Z, Ozenci AM, Acar N, Ustunel I (2010) The effect of systemic corticosteroid treatment on the immunolocalisation of Notch-1, Delta, CD105 and CD166 in rat articular cartilage. Acta Histochem 112:424–431

    Article  PubMed  CAS  Google Scholar 

  52. Musumeci G, Leonardi R, Carnazza ML, Cardile V, Pichler K, Weinberg AM, Loreto C (2012) Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: an in vivo and in vitro study. Tissue Cell (in press)

  53. Elsaid KA, Zhang L, Waller K, Tofte J, Teeple E, Fleming BC, Jay GD (2012) The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin’s effect in exercised joints following ACL transection. Osteoarthritis Cartilage 20:940–948

    Article  PubMed  CAS  Google Scholar 

  54. Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD, Hulstyn MJ, Shalvoy R, Jay GD (2008) Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58:1707–1715

    Article  PubMed  CAS  Google Scholar 

  55. Catterall JB, Stabler TV, Flannery CR, Kraus VB (2010) Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther 12:R229

    Article  PubMed  Google Scholar 

  56. Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17:157–163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants provided by the Medicine and Surgery Faculty of Catania, Department of Bio-Medical Sciences, Section of Human Anatomy and Histology, University of Catania.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Musumeci.

About this article

Cite this article

Musumeci, G., Loreto, C., Leonardi, R. et al. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 31, 274–284 (2013). https://doi.org/10.1007/s00774-012-0414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0414-9

Keywords

Navigation