Skip to main content

Advertisement

Log in

Significance of hemolysis on extracorporeal life support after cardiac surgery in children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Hemolysis is common during extracorporeal life support (ECLS). Elevated levels of circulating plasma free hemoglobin (FHb) has been linked to the development of hemoglobinuria nephropathy. Its clinical significance in patients receiving ECLS remains unknown. Medical records of 104 children <3 years old who required ECLS after repair of congenital heart disease were reviewed. Forty-two patients required continuous renal replacement therapy (CRRT) during ECLS (CRRT group), and 62 patients did not (no-CRRT group). For all patients, FHb level and the degree of fluid overload at the end of ECLS predicted the mortality rate during ECLS. Compared with the no-CRRT group, the CRRT group had a higher mortality rate during ECLS, a higher peak FHb level during ECLS, a higher FHb level at the end of ECLS, and more days of ECLS. In the CRRT group, the FHb level at the end of ECLS predicted death during ECLS. In the no-CRRT group, the peak FHb level was associated with a worse renal function. In conclusion, elevated FHb levels were associated with renal dysfunction and death during ECLS in children undergoing cardiac surgery. Further studies are needed to elucidate the cause–effect relationship in our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinhorn RH, Isham-Schopf B, Smith C, Green TP (1989) Hemolysis during long-term extracorporeal membrane oxygenation. J Pediatr 115:625–630

    Article  CAS  Google Scholar 

  2. Williams AR (1973) Shear-induced fragmentation of human erythrocytes. Biorheology 10:303–311

    Article  CAS  Google Scholar 

  3. Shimono T, Makinouchi K, Nose Y (1995) Total erythrocyte destruction time: the new index for the hemolytic performance of rotary blood pumps. Artif Organs 19:571–575

    Article  CAS  Google Scholar 

  4. Green TP, Kriesmer P, Steinhorn RH, Payne NR, Irmiter RJ, Meyer CL (1991) Comparison of pressure-volume-flow relationships in centrifugal and roller pump extracorporeal membrane oxygenation systems for neonates. ASAIO Trans 37:572–576

    CAS  PubMed  Google Scholar 

  5. Wielogorski JW, Cross DE, Nwadike EV (1975) The effects of subatmospheric pressure on the haemolysis of blood. J Biomech 8:321–325

    Article  CAS  Google Scholar 

  6. Bearss MG (1993) The relationship between membrane oxygenator blood path pressure drop and hemolysis: an in-vitro evaluation. J Extracorpor Technol 25:87–92

    Google Scholar 

  7. Skogby M, Mellgren K, Adrian K, Friberg LG, Chevalier JY, Mellgren G (1998) Induced cell trauma during in vitro perfusion: a comparison between two different perfusion systems. Artif Organs 22:1045–1051

    Article  CAS  Google Scholar 

  8. Zager RA, Gamelin LM (1989) Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am J Physiol Renal Physiol 256:F446–F455

    Article  CAS  Google Scholar 

  9. Kolovos NS, Bratton SL, Moler FW, Bove EL, Ohye RG, Bartlett RH, Kulik TJ (2003) Outcome of pediatric patients treated with extracorporeal life support after cardiac surgery. Ann Thorac Surg 76:1435–1441

    Article  Google Scholar 

  10. Duncan BW, Hraska V, Jonas RA, Wessel DL, Del Nido PJ, Laussen PC, Mayer JE, Lapierre RA, Wilson JM (1999) Mechanical circulatory support in children with cardiac disease. J Thorac Cardiovasc Surg 117:529–542

    Article  CAS  Google Scholar 

  11. Montgomery VL, Strotman JM, Ross MP (2000) Impact of multiple organ system dysfunction and nosocomial infections on survival of children treated with extracorporeal membrane oxygenation after heart surgery. Crit Care Med 28:526–531

    Article  CAS  Google Scholar 

  12. Aharon AS, Drinkwater DC Jr, Churchwell KB, Quisling SV, Reddy VS, Taylor M, Hix S, Christian KG, Pietsch JB, Deshpande JK, Kambam J, Graham TP, Chang PA (2001) Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann Thorac Surg 72:2095–2101

    Article  CAS  Google Scholar 

  13. Hasegawa T, Yamaguchi M, Yoshimura N, Okita Y (2005) The dependence of myocardial damage on age and ischemic time in pediatric cardiac surgery. J Thorac Cardiovasc Surg 129:192–198

    Article  Google Scholar 

  14. Swaniker F, Kolla S, Moler F, Custer J, Grams R, Barlett R, Hirschl R (2000) Extracorporeal life support outcome for 128 pediatric patients with respiratory failure. J Pediatr Surg 35:197–202

    Article  CAS  Google Scholar 

  15. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    Article  CAS  Google Scholar 

  16. Mehta U, Laks H, Sadeghi A, Marelli D, Odim J, Alejos J, Kim M, Atkinson JB, Bui KC (2000) Extracorporeal membrane oxygenation for cardiac support in pediatric patients. Am Surg 66:879–886

    CAS  PubMed  Google Scholar 

  17. Raithel SC, Pennington DG, Boegner E, Fiore A, Weber TR (1992) Extracorporeal membrane oxygenation in children after cardiac surgery. Circulation 86:II305–II310

    CAS  PubMed  Google Scholar 

  18. Shah SA, Shankar V, Churchwell KB, Taylor MB, Scott BP, Bartilson R, Byrne DW, Christian KG, Drinkwater DC (2005) Clinical outcomes of 84 children with congenital heart disease managed with extracorporeal membrane oxygenation after cardiac surgery. ASAIO J 51:504–507

    Article  Google Scholar 

  19. Baslaim G, Bashore J, Al-Malki F, Jamjoom A (2006) Can the outcome of pediatric extracorporeal membrane oxygenation after cardiac surgery be predicted? Ann Thorac Cardiovasc Surg 12:21–27

    PubMed  Google Scholar 

  20. Meyer RJ, Brophy PD, Bunchman TE, Annich GM, Maxvold NJ, Mottes TA, Custer JR (2001) Survival and renal function in pediatric patients following extracorporeal life support with hemofiltration. Pediatr Crit Care Med 2:238–242

    Article  Google Scholar 

  21. Humphrey H, Hall J, Sznajder I, Silverstein M, Wood L (1990) Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 97:1176–1180

    Article  CAS  Google Scholar 

  22. Schuller D, Mitchell JP, Calandrino FS, Schuster DP (1991) Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest 100:1068–1075

    Article  CAS  Google Scholar 

  23. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R (2001) Outcome in children receiving continuous venovenous hemofiltration. Pediatrics 107:1309–1312

    Article  CAS  Google Scholar 

  24. Haussinger D, Lang F, Gerok W (1994) Regulation of cell function by the cellular hydration state. Am J Physiol Endocrinol Metab 267:E343–E355

    Article  CAS  Google Scholar 

  25. Betrus C, Remenapp R, Charpie J, Kudelka T, Brophy P, Smoyer WE, Lin JJ (2007) Enhanced hemolysis in pediatric patients requiring extracorporeal membrane oxygenation and continuous renal replacement therapy. Ann Thorac Cardiovasc Surg 13:378–383

    PubMed  Google Scholar 

  26. De Wachter DS, Verdonck PR, De Vos JY, Hombrouckx RO (1997) Blood trauma in plastic haemodialysis cannulae. Int J Artif Organs 20:366–370

    Article  Google Scholar 

  27. Luckraz H, Woods M, Large SR (2002) And hemolysis goes on: ventricular assist device in combination with veno-venous hemofiltration. Ann Thorac Surg 73:546–548

    Article  Google Scholar 

  28. Bunn HF, Esham WT, Bull RW (1969) The renal handling of hemoglobin. I. Glomerular filtration. J Exp Med 129:909–923

    Article  CAS  Google Scholar 

  29. Jaenike JR (1966) The renal lesion associated with hemoglobinemia. I. Its production and functional evolution in the rat. J Exp Med 123:523–535

    Article  CAS  Google Scholar 

  30. Gburek J, Verroust PJ, Willnow TE, Fyfe JC, Nowacki W, Jacobsen C, Moestrup SK, Christensen EI (2002) Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J Am Soc Nephrol 13:423–430

    CAS  PubMed  Google Scholar 

  31. Lieberthal W (1995) Stroma-free hemoglobin: a potential blood substitute. J Lab Clin Med 126:231–232

    CAS  PubMed  Google Scholar 

  32. Paller MS, Hedlund BE (1988) Role of iron in postischemic renal injury in the rat. Kidney Int 34:474–480

    Article  CAS  Google Scholar 

  33. Lieberthal W, Fuhro R, Andry C, Valeri CR (2000) Effects of hemoglobin-based oxygen-carrying solutions in anesthetized rats with acute ischemic renal failure. J Lab Clin Med 135:73–81

    Article  CAS  Google Scholar 

  34. Vogel WM, Dennis RC, Cassidy G, Apstein CS, Valeri CR (1986) Coronary constrictor effect of stroma-free hemoglobin solutions. Am J Physiol Heart Circ Physiol 251:H413–H420

    Article  CAS  Google Scholar 

  35. Rother RP, Bell L, Hillmen P, Gladwin MT (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662

    Article  CAS  Google Scholar 

  36. Kulik TJ, Moler FW, Palmisano JM, Custer JR, Mosca RS, Bove EL, Bartlett RH (1996) Outcome-associated factors in pediatric patients treated with extracorporeal membrane oxygenator after cardiac surgery. Circulation 94(9 Suppl):II63–II68

    CAS  PubMed  Google Scholar 

  37. Ando M, Takahashi Y, Kikuchi T, Short operation time (2005) An important element to reduce operative invasiveness in pediatric cardiac surgery. Ann Thorac Surg 80:631–635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Jar Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gbadegesin, R., Zhao, S., Charpie, J. et al. Significance of hemolysis on extracorporeal life support after cardiac surgery in children. Pediatr Nephrol 24, 589–595 (2009). https://doi.org/10.1007/s00467-008-1047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-1047-z

Keywords

Navigation