Skip to main content

Advertisement

Log in

Evolution in the definition and diagnosis of the Hodgkin lymphomas and related entities

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Hodgkin lymphoma was the first of the lymphomas to be recognized as a specific disease entity. However, recent studies have highlighted the heterogeneity of the diseases associated with this eponym warranting clarification and refinement of diagnostic terminology. While classic Hodgkin lymphoma (CHL) remains an essentially unchanged diagnostic entity in the 2022 International Consensus Classification of Mature Lymphoid Neoplasms (2022 ICC), nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is now renamed nodular lymphocyte predominant B cell lymphoma (NLPBL) in recognition of the distinct pathologic, biologic, and clinical differences. Fan patterns A, B, and C (sharing the presence of evident follicular structures, and retention of a B cell rich background) will be combined in “typical” or grade 1, while the other “variant” patterns, D, E, and F, are considered grade 2. T-cell/histiocyte-rich large B cell lymphoma (THRBCL) is considered part of the “variant” NLPHL continuum.

The entity previously known as “B cell lymphoma, unclassifiable (BCLU), with features intermediate between diffuse large B cell lymphoma (DLBCL) and CHL” has been renamed “mediastinal gray zone lymphoma” (MGZL) in recognition of the importance of the thymic niche in the biology of this tumor. The diagnostic criteria for MGZL have been refined and require both a high tumor cell density and a strongly preserved B cell program.

This article will describe updates on CHL, NLPBL, and MGZL in the recently published 2022 ICC and provide some useful differential diagnostic clues in cases with atypical morphology or immunophenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  Google Scholar 

  2. Campo E, Jaffe ES, Cook JR et al (2022) The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood. https://doi.org/10.1182/blood.2022015851

    Article  Google Scholar 

  3. Jaffe ES, Stein H, Swerdlow SH (2017) Classic Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al (eds) who classification of tumours of haematopoietic and lymphoid tissues, revised 4th edition. Int Agency Res Cancer Lyon. pp 435–442

  4. Connors JM, Cozen W, Steidl C et al (2020) Hodgkin lymphoma. Nat Rev Dis Primers 6:61. https://doi.org/10.1038/s41572-020-0189-6

    Article  Google Scholar 

  5. Piris MA, Medeiros LJ, Chang K-C (2020) Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology 52:154–165. https://doi.org/10.1016/j.pathol.2019.09.005

    Article  CAS  Google Scholar 

  6. Jaffe ES (2022) Lymphoma nomenclature - what’s in a name? Br J Haematol 197:539–543. https://doi.org/10.1111/bjh.18063

    Article  Google Scholar 

  7. Anagnostopoulos I, Hansmann ML, Franssila K et al (2000) European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 96:1889–1899

    CAS  Google Scholar 

  8. Nam-Cha SH, Montes-Moreno S, Salcedo MT et al (2009) Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod Pathol 22:1006–1015. https://doi.org/10.1038/modpathol.2009.54

    Article  CAS  Google Scholar 

  9. Steidl C (2017) Exposing Hodgkin-Reed-Sternberg cells. Blood 129:6–7. https://doi.org/10.1182/blood-2016-11-746701

    Article  Google Scholar 

  10. O’Malley DP, Dogan A, Fedoriw Y et al (2019) American Registry of Pathology Expert Opinions: immunohistochemical evaluation of classic Hodgkin lymphoma. Ann Diagn Pathol 39:105–110. https://doi.org/10.1016/j.anndiagpath.2019.02.001

    Article  Google Scholar 

  11. Tang H, Wei Q, Ge J et al (2013) IMP3 as a supplemental diagnostic marker for Hodgkin lymphoma. Hum pathol 44:2167–2172. https://doi.org/10.1016/j.humpath.2013.04.011

    Article  CAS  Google Scholar 

  12. Tzankov A, Bourgau C, Kaiser A et al (2005) Rare expression of T-cell markers in classical Hodgkin’s lymphoma. Mod Pathol 18:1542–1549. https://doi.org/10.1038/modpathol.3800473

    Article  CAS  Google Scholar 

  13. Kezlarian B, Alhyari M, Venkataraman G et al (2019) GATA3 Immunohistochemical staining in Hodgkin lymphoma: diagnostic utility in differentiating Classic Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma and other mimicking entities. Appl Immunohistochem Mol Morphol 27:180–184. https://doi.org/10.1097/PAI.0000000000000581

    Article  CAS  Google Scholar 

  14. Bosch-Schips J, Granai M, Quintanilla-Martinez L, Fend F (2022) The grey zones of classic Hodgkin lymphoma. Cancers (Basel)  14(3):742. https://doi.org/10.3390/cancers14030742

  15. Weniger MA, Küppers R (2021) Molecular biology of Hodgkin lymphoma. Leukemia 35:968–981. https://doi.org/10.1038/s41375-021-01204-6

    Article  CAS  Google Scholar 

  16. Perry AM, Smith LB, Bagg A (2021) Classic Hodgkin lymphoma - old disease, new directions: an update on pathology, molecular features and biological prognostic markers. Acta Med Acad 50:110–125. https://doi.org/10.5644/ama2006-124.329

    Article  Google Scholar 

  17. Cader FZ, Schackmann RCJ, Hu X et al (2018) Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-effector microenvironment. Blood 132:825–836. https://doi.org/10.1182/blood-2018-04-843714

    Article  CAS  Google Scholar 

  18. Aoki T, Chong LC, Takata K et al (2020) Single-cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Canc Discov 10:406–421. https://doi.org/10.1158/2159-8290.CD-19-0680

    Article  Google Scholar 

  19. Greaves P, Clear A, Owen A et al (2013) Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood 122:2856–2863. https://doi.org/10.1182/blood-2013-06-508044

    Article  CAS  Google Scholar 

  20. Duffield AS, Ascierto ML, Anders RA et al (2017) Th17 immune microenvironment in Epstein-Barr virus-negative Hodgkin lymphoma: implications for immunotherapy. Blood Adv 1:1324–1334. https://doi.org/10.1182/bloodadvances.2017007260

    Article  CAS  Google Scholar 

  21. Roemer MGM, Advani RH, Ligon AH et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin Lymphoma and predict outcome. J Clin Oncol 34:2690–2697. https://doi.org/10.1200/JCO.2016.66.4482

    Article  CAS  Google Scholar 

  22. Vrzalikova K, Pugh M, Mundo L, Murray P (2021) The contribution of EBV to the pathogenesis of classical Hodgkin lymphoma. Ann Lymphoma 5:30–30. https://doi.org/10.21037/aol-21-8

    Article  Google Scholar 

  23. Wienand K, Chapuy B, Stewart C et al (2019) Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 3:4065–4080. https://doi.org/10.1182/bloodadvances.2019001012

    Article  CAS  Google Scholar 

  24. Montgomery ND, Coward WB, Johnson S et al (2016) Karyotypic abnormalities associated with Epstein-Barr virus status in classical Hodgkin lymphoma. Cancer Genet 209:408–416. https://doi.org/10.1016/j.cancergen.2016.08.006

    Article  CAS  Google Scholar 

  25. Tiacci E, Ladewig E, Schiavoni G et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131:2454–2465. https://doi.org/10.1182/blood-2017-11-814913

    Article  CAS  Google Scholar 

  26. Schmitz R, Hansmann M-L, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989. https://doi.org/10.1084/jem.20090528

    Article  CAS  Google Scholar 

  27. Green MR, Rodig S, Juszczynski P et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18:1611–1618. https://doi.org/10.1158/1078-0432.CCR-11-1942

    Article  CAS  Google Scholar 

  28. Chetaille B, Bertucci F, Finetti P et al (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113:2765–3775. https://doi.org/10.1182/blood-2008-07-168096

    Article  CAS  Google Scholar 

  29. Wu R, Sattarzadeh A, Rutgers B et al (2018) The microenvironment of classical Hodgkin lymphoma: heterogeneity by Epstein-Barr virus presence and location within the tumor. Blood Cancer J 8:e622. https://doi.org/10.1038/bcj.2017.102

    Article  CAS  Google Scholar 

  30. Oyama T, Ichimura K, Suzuki R et al (2003) Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 27:16–26. https://doi.org/10.1097/00000478-200301000-00003

    Article  Google Scholar 

  31. MacLennan KA, Bennett MH, Tu A et al (1989) Relationship of histopathologic features to survival and relapse in nodular sclerosing Hodgkin’s disease. A study of 1659 patients. Cancer 64:1686–1693. https://doi.org/10.1002/1097-0142(19891015)64:8%3c1686::aid-cncr2820640822%3e3.0.co;2-i

    Article  CAS  Google Scholar 

  32. Sethi T, Nguyen V, Li S et al (2017) Differences in outcome of patients with syncytial variant Hodgkin lymphoma compared with typical nodular sclerosis Hodgkin lymphoma. Ther Adv Hematol 8:13–20. https://doi.org/10.1177/2040620716676256

    Article  Google Scholar 

  33. Montes-Mojarro IA, Steinhilber J, Bonzheim I et al (2018) The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL). Cancers (Basel) 10:107. https://doi.org/10.3390/cancers10040107

    Article  CAS  Google Scholar 

  34. Parente P, Zanelli M, Sanguedolce F et al (2020) Hodgkin Reed-Sternberg-like cells in non-Hodgkin lymphoma. Diagnostics (Basel) 10(12):1019. https://doi.org/10.3390/diagnostics10121019

  35. Dojcinov SD, Fend F, Quintanilla-Martinez L (2018) EBV-Positive lymphoproliferations of B- T- and NK-cell derivation in non-immunocompromised hosts. Pathogens 7:28. https://doi.org/10.3390/pathogens7010028

    Article  CAS  Google Scholar 

  36. Quintanilla-Martinez L, Swerdlow S, Tousseyn T et al (2022) New concepts in EBV-associated B, T and NK-cell lymphoproliferative disorders. Virchows Arch. https://doi.org/10.1007/s00428-022-03414-4

  37. Nicolae A, Pittaluga S, Venkataraman G et al (2013) Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage. Am J Surg Pathol 37:816–826. https://doi.org/10.1097/PAS.0b013e3182785610

    Article  Google Scholar 

  38. Abukhiran I, Syrbu SI, Holman CJ (2021) Markers of follicular helper T cells are occasionally expressed in T-cell or histiocyte-rich large B-cell lymphoma, classic Hodgkin lymphoma, and atypical paracortical hyperplasiaA diagnostic pitfall for T-cell lymphomas of T follicular helper origin. Am J Clin Pathol 156:409–426. https://doi.org/10.1093/ajcp/aqaa249

    Article  CAS  Google Scholar 

  39. Karube K, Takatori M, Sakihama S et al (2021) Clinicopathological features of adult T-cell leukemia/lymphoma with HTLV-1-infected Hodgkin and Reed-Sternberg-like cells. Blood Adv 5:198–206. https://doi.org/10.1182/bloodadvances.2020003201

    Article  CAS  Google Scholar 

  40. Xiao W, Chen WW, Sorbara L et al (2016) Hodgkin lymphoma variant of Richter transformation: morphology, Epstein-Barr virus status, clonality, and survival analysis-with comparison to Hodgkin-like lesion. Hum Pathol 55:108–116. https://doi.org/10.1016/j.humpath.2016.04.019

    Article  Google Scholar 

  41. King RL, Gupta A, Kurtin PJ et al (2022) Chronic lymphocytic leukemia (CLL) with Reed-Sternberg-like cells vs classic Hodgkin lymphoma transformation of CLL: does this distinction matter? Blood Cancer J 12:18. https://doi.org/10.1038/s41408-022-00616-6

    Article  Google Scholar 

  42. Vandenberghe P, Wlodarska I, Tousseyn T et al (2015) Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2:e55-65. https://doi.org/10.1016/S2352-3026(14)00039-8

    Article  Google Scholar 

  43. Buedts L, Wlodarska I, Finalet-Ferreiro J et al (2021) The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU Leuven and LYSA study on cell-free DNA. Blood Adv 5:1991–2002. https://doi.org/10.1182/bloodadvances.2020003039

    Article  CAS  Google Scholar 

  44. Eberle FC, Salaverria I, Steidl C et al (2011) Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol 24:1586–1597. https://doi.org/10.1038/modpathol.2011.116

    Article  CAS  Google Scholar 

  45. Jaffe ES, Stein H, Swerdlow SH et al (2017) B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classic Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, revised 4th edition. Int Agency Res Cancer Lyon. pp 342–344

  46. Sarkozy C, Hung SS, Chavez EA et al (2021) Mutational landscape of gray zone lymphoma. Blood 137:1765–1776. https://doi.org/10.1182/blood.2020007507

    Article  CAS  Google Scholar 

  47. Sarkozy C, Chong L, Takata K et al (2020) Gene expression profiling of gray zone lymphoma. Blood Adv 4:2523–2535. https://doi.org/10.1182/bloodadvances.2020001923

    Article  CAS  Google Scholar 

  48. Oschlies I, Burkhardt B, Salaverria I et al (2011) Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica 96:262–268. https://doi.org/10.3324/haematol.2010.030809

    Article  Google Scholar 

  49. Pilichowska M, Pittaluga S, Ferry JA et al (2017) Clinicopathologic consensus study of gray zone lymphoma with features intermediate between DLBCL and classical HL. Blood Adv 1:2600–2609. https://doi.org/10.1182/bloodadvances.2017009472

    Article  CAS  Google Scholar 

  50. Wilson WH, Pittaluga S, Nicolae A et al (2014) A prospective study of mediastinal gray-zone lymphoma. Blood 124:1563–1569. https://doi.org/10.1182/blood-2014-03-564906

    Article  CAS  Google Scholar 

  51. Sarkozy C, Copie-Bergman C, Damotte D et al (2019) Gray-zone lymphoma between cHL and large B-cell lymphoma. Am J Surg Pathol 43:341–351. https://doi.org/10.1097/PAS.0000000000001198

    Article  Google Scholar 

  52. Pittaluga S, Nicolae A, Wright GW et al (2020) Gene expression profiling of mediastinal gray zone lymphoma and its relationship to primary mediastinal B-cell lymphoma and classical hodgkin lymphoma. Blood Cancer Discov 1:155–161. https://doi.org/10.1158/2643-3230.BCD-20-0009

    Article  CAS  Google Scholar 

  53. Vassilakopoulos TP, Piperidou A, Hadjiharissi E et al (2021) Development of classic Hodgkin lymphoma after successful treatment of primary mediastinal large b-cell lymphoma: results from a well-defined database. Leuk Res 100:106479. https://doi.org/10.1016/j.leukres.2020.106479

    Article  Google Scholar 

  54. Traverse-Glehen A, Pittaluga S, Gaulard P et al (2005) Mediastinal gray zone lymphoma. Am J Surg Pathol 29:1411–1421. https://doi.org/10.1097/01.pas.0000180856.74572.73

    Article  Google Scholar 

  55. Quintanilla-Martinez L, de Jong D, de Mascarel A et al (2009) Gray zones around diffuse large B cell lymphoma. Conclusions based on the workshop of the XIV meeting of the European Association for Hematopathology and the Society of Hematopathology in Bordeaux. France J Hematopath 2:211–236. https://doi.org/10.1007/s12308-009-0053-9

    Article  Google Scholar 

  56. Nicolae A, Pittaluga S, Abdullah S et al (2015) EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 126:863–872. https://doi.org/10.1182/blood-2015-02-630632

    Article  CAS  Google Scholar 

  57. Rosenwald A, Wright G, Leroy K et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862. https://doi.org/10.1084/jem.20031074

    Article  CAS  Google Scholar 

  58. Savage KJ, Monti S, Kutok JL et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102:3871–3879. https://doi.org/10.1182/blood-2003-06-1841

    Article  CAS  Google Scholar 

  59. Chapuy B, Stewart C, Dunford AJ et al (2019) Genomic analyses of PMBL reveal new drivers and mechanisms of sensitivity to PD-1 blockade. Blood 134:2369–2382. https://doi.org/10.1182/blood.2019002067

    Article  Google Scholar 

  60. Mottok A, Hung SS, Chavez EA et al (2019) Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma. Blood 134:802–813. https://doi.org/10.1182/blood.2019001126

    Article  CAS  Google Scholar 

  61. Eberle FC, Rodriguez-Canales J, Wei L et al (2011) Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica 96:558–566. https://doi.org/10.3324/haematol.2010.033167

    Article  Google Scholar 

  62. Mason DY, Banks PM, Chan J et al (1994) Nodular lymphocyte predominance Hodgkin’s disease. A distinct clinicopathological entity. Am J Surg Pathol 18:526–530. https://doi.org/10.1097/00000478-199405000-00014

    Article  CAS  Google Scholar 

  63. Stein H, Swerdlow SH, Gascoyne RD et al (2017) Nodular lymphocyte predominant Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al (eds) WHO classification of tumors of haematopoietic and lymphoid tissues, revised 4th edition. Int Agency Res Cancer Lyon. pp 431–434

  64. Hartmann S, Eichenauer DA (2020) Nodular lymphocyte predominant Hodgkin lymphoma: pathology, clinical course and relation to T-cell/histiocyte rich large B-cell lymphoma. Pathology 52:142–153. https://doi.org/10.1016/j.pathol.2019.10.003

    Article  CAS  Google Scholar 

  65. Prakash S, Fountaine T, Raffeld M et al (2006) IgD positive L&H cells identify a unique subset of nodular lymphocyte predominant Hodgkin lymphoma. Am J Surg Pathol 30:585–592. https://doi.org/10.1097/01.pas.0000194741.87798.45

    Article  Google Scholar 

  66. Thurner L, Hartmann S, Fadle N et al (2020) Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma. Nature Commun 11:2465. https://doi.org/10.1038/s41467-020-16375-6

    Article  CAS  Google Scholar 

  67. Schuhmacher B, Bein J, Rausch T et al (2019) JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. Haematologica 104:330–337. https://doi.org/10.3324/haematol.2018.203224

    Article  CAS  Google Scholar 

  68. Hartmann S, Schuhmacher B, Rausch T et al (2016) Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia 30:844–853. https://doi.org/10.1038/leu.2015.328

    Article  CAS  Google Scholar 

  69. Fan Z, Natkunam Y, Bair E et al (2003) Characterization of variant patterns of nodular lymphocyte predominant hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol 27:1346–1356. https://doi.org/10.1097/00000478-200310000-00007

    Article  Google Scholar 

  70. Hartmann S, Eichenauer DA, Plütschow A et al (2013) The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood 122:4246–52; quiz 4292. https://doi.org/10.1182/blood-2013-07-515825

  71. Moore EM, Swerdlow SH, Gibson SE (2017) J chain and myocyte enhancer factor 2B are useful in differentiating classical Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Hum Pathol 68:47–53. https://doi.org/10.1016/j.humpath.2017.08.015

    Article  CAS  Google Scholar 

  72. Huppmann AR, Nicolae A, Slack GW et al (2014) EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol 38:316–324. https://doi.org/10.1097/PAS.0000000000000107

    Article  Google Scholar 

  73. Wang S, Medeiros LJ, Xu-Monette ZY et al (2014) Epstein-Barr virus-positive nodular lymphocyte predominant Hodgkin lymphoma. Ann Diagn Pathol 18:203–209. https://doi.org/10.1016/j.anndiagpath.2014.03.007

    Article  Google Scholar 

  74. Ott G, Delabie J, Gascoyne RD, et al (2017) T-cell/histiocyte-rich large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, revised 4th edition. Int Agency Res Cancer Lyon. pp 298–299

Download references

Acknowledgements

TAT holds a Mandate for Fundamental and Translational Research from the “Stichting tegen Kanker” (2019-091) and is a co-founder of the Fund “Me To You” supporting research in lymphoma/leukemia (https://www.kuleuven.be/mecenaat/fondsen/geneeskunde/fonds-me-to-you).

Author information

Authors and Affiliations

Authors

Contributions

All the authors are members of the Clinical Advisory Committee that prepared the 2022 ICC classification of lymphoid neoplasms. TAT and RLK contributed equally to the writing of this review and preparation of the tables. FF, ALF, PB, and ESJ reviewed and corrected the manuscript.

Corresponding author

Correspondence to Thomas A. Tousseyn.

Ethics declarations

The authors declare that they have followed the principles of ethical and professional conduct.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

- “Hodgkin” terminology will be reserved for the classic HL; the 4 major subtypes of CHL remain unchanged.

- Nodular LP B cell lymphoma is the new terminology for the formerly known nodular LP Hodgkin lymphoma, and “typical” Fan patterns (A, B, and C) will be combined in grade 1, while the other “variant” patterns (D, E, and F) are considered grade 2.

- THRLBCL is considered part of the “variant” NLPHL continuum.

- Mediastinal gray zone lymphoma requires both (1) strongly preserved B cell program and (2) high tumor cell density.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tousseyn, T.A., King, R.L., Fend, F. et al. Evolution in the definition and diagnosis of the Hodgkin lymphomas and related entities. Virchows Arch 482, 207–226 (2023). https://doi.org/10.1007/s00428-022-03427-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03427-z

Keywords

Navigation