Skip to main content
Log in

Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to test the hypotheses that a greater oxidative capacity in children results in a lower phosphocreatine (PCr) depletion, a faster PCr resynthesis and a lower muscle acidification during high-intensity intermittent exercise compared to adults.

Methods

Sixteen children (9.4 ± 0.5 years) and 16 adults (26.1 ± 0.3 years) completed a protocol consisting of a dynamic plantar flexion (10 bouts of 30-s exercise at 25 % of one repetition maximum separated by 20-s recovery), followed by 10 min of passive recovery. Changes of PCr, ATP, inorganic phosphate, and phosphomonoesters were measured by means of 31Phosphorous-magnetic resonance spectroscopy during and post-exercise.

Results

Average PCr (percentage of [PCr] at initial rest (%[PCr]i)) at the end of the exercise (adults 17 ± 12 %[PCr]i, children 38 ± 17 %[PCr]i, P < 0.01) and recovery periods (adults 37 ± 14 %[PCr]i, children 57 ± 17 %[PCr]i, P < 0.01) was significantly lower in adults compared to children, induced by a stronger PCr decrease during the first exercise interval (adults −73 ± 10 %[PCr]i, children −55 ± 15 %[PCr]i, P < 0.01). End-exercise pH was significantly higher in children compared to adults (children 6.90 + 0.20, −0.14; adults 6.67 + 0.23, −0.15, P < 0.05).

Conclusions

From our results we suggest relatively higher rates of oxidative ATP formation in children’s muscle for covering the ATP demand of high-intensity intermittent exercise compared to adults, enabling children to begin each exercise interval with significantly higher PCr concentrations and leading to an overall lower muscle acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FTI:

Force–time integral

MR:

Magnetic resonance

pH:

Intracellular pH

Pi :

Inorganic phosphate

PCr:

Phosphocreatine

PP:

Peak power output

PME:

Phosphomonoesters

ROM:

Range of motion

SD:

Standard deviation

τ :

Time constant

W:

Watts

WAnT:

Wingate anaerobic test

W/kg mm:

Watts per kilogram muscle mass

1RM:

One repetition maximum

31P-MRS:

31Phosphorous-magnetic resonance spectroscopy

%[PCri]:

Percent of PCr at initial rest

References

  • Armon Y, Cooper D, Flores R, Zanconato S, Barstow TJ (1991) Oxygen uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol 70:841–848

    Article  PubMed  CAS  Google Scholar 

  • Armstrong N, Fawkner SG (2008) Non-invasive methods in paediatric exercise physiology. Appl Physiol Nutr Metab 33:402–410

    Article  PubMed  Google Scholar 

  • Arnold D, Matthews P, Radda G (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1:307–315

    Article  PubMed  CAS  Google Scholar 

  • Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper D (1995) The level and tempo of children’s physical activities: an observational study. Med Sci Sport Exerc 27:1033–1041

    Article  CAS  Google Scholar 

  • Barker AR, Armstrong N (2010) Insights into developmental muscle metabolism through the use of 31P-magnetic resonance spectroscopy: a review. Pediatr Exerc Sci 22:350–368

    PubMed  Google Scholar 

  • Barker AR, Welsman JR, Welford D, Fulford J, Williams C, Armstrong N (2006) Reliability of 31P-magnetic resonance spectroscopy during an exhaustive incremental exercise test in children. Eur J Appl Physiol 98:556–565

    Article  PubMed  Google Scholar 

  • Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N (2008a) Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. J Appl Physiol 105:446–456

    Article  PubMed  Google Scholar 

  • Barker AR, Welsman JR, Fulford J, Welford D, Williams CA, Armstrong N (2008b) Muscle phosphocreatine and pulmonary oxygen uptake kinetics in children at the onset and offset of moderate intensity exercise. Eur J Appl Physiol 102:727–738

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or O (1987) The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med 4:381–394

    Article  PubMed  CAS  Google Scholar 

  • Barstow TJ, Buchthal S, Zanconato S, Cooper D (1994) Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J Appl Physiol 77:1742–1749

    PubMed  CAS  Google Scholar 

  • Bell R, MacDougall J, Billeter R, Howald H (1980) Muscle fiber types and morphometric analysis of skeletal muscle in six-year-old children. Med Sci Sports Exerc 12:28–31

    Article  PubMed  CAS  Google Scholar 

  • Bendahan D, Confort-Gouny S, Kozak Reiss G, Cozzone PJ (1990) Heterogeneity of metabolic response to muscular exercise in humans. New criteria of invariance defined by in vivo phosphorus-31 NMR spectroscopy. FEBS Lett 272:155–158

    Article  PubMed  CAS  Google Scholar 

  • Bendahan D, Mattei JP, Ghattas B, Confort-Gouny S, Le Guern ME, Cozzone PJ (2002) Citrulline/malate promotes aerobic energy production in human exercising muscle. Br J Sports Med 36:282–289

    Article  PubMed  CAS  Google Scholar 

  • Berg A, Kim S, Keul J (1986) Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 7:236–239. doi:10.1055/s-2008-1025766

    Article  PubMed  CAS  Google Scholar 

  • Blei ML, Conley KE, Kushmerick MJ (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol 465:203–222

    PubMed  CAS  Google Scholar 

  • Boisseau N, Delamarche P (2000) Metabolic and hormonal responses to exercise in children and adolescents. Sports Med 30:405–422

    Article  PubMed  CAS  Google Scholar 

  • Chia M, Armstrong N, Childs D (1997) The assessment of children’s anaerobic performance using modifications of the Wingate anaerobic test. Pediatr Exerc Sci 9:80–89

    Google Scholar 

  • Conley KE, Kemper WF, Crowther GJ (2001) Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation. J Exp Biol 204:3189–3194

    PubMed  CAS  Google Scholar 

  • Cooper DM, Barstow TJ (1996) Magnetic resonance imaging and spectroscopy in studying exercise in children. Exerc Sports Sci Rev 24:475–500

    Article  CAS  Google Scholar 

  • Cooper DM, Berry C, Lamarra N, Wasserman K (1985) Kinetics of oxygen uptake and heart rate at onset of exercise in children. J Appl Physiol 59:211–217

    PubMed  CAS  Google Scholar 

  • Crowther GJ, Carey MF, Kemper WF, Conley KE (2002) Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab 282:E67–E73

    PubMed  CAS  Google Scholar 

  • Doré E, Diallo O, Franca N, Bedu M, Van Praagh E (2000) Dimensional changes cannot account for all differences in short-term cycling power during growth. Int J Sports Med 21:360–365

    Article  PubMed  Google Scholar 

  • Dotan R, Bar-Or O (1983) Load optimization for the Wingate anaerobic test. Eur J Appl Physiol Occup Physiol 51:409–417

    Article  PubMed  CAS  Google Scholar 

  • Dotan R, Ohana S, Bediz C, Falk B (2003) Blood lactate disappearance dynamics in boys and men following exercise of similar and dissimilar peak-lactate concentrations. J Pediatr Endocrinol Metab 16:419–429

    Article  PubMed  CAS  Google Scholar 

  • Dotan R, Mitchell C, Cohen R, Klentrou P, Gabriel D, Falk B (2012) Child–adult differences in muscle activation—a review. Pediatr Exerc Sci 24:2–21

    PubMed  Google Scholar 

  • Eriksson BO (1980) Muscle metabolism in children—a review. Acta Paediatr 69:20–27

    Article  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B (1973) Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 87:485–497

    Article  PubMed  CAS  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B (1974) The effect of physical training on muscle enzyme activities and fiber composition in 11-year-old boys. Acta Paediatr Belg 28(suppl):245–252

    PubMed  CAS  Google Scholar 

  • Evans WJ, Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50(Special Issue):11–16

    Article  Google Scholar 

  • Falk B, Dotan R (2006) Child–adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev 34:107–112

    Article  PubMed  Google Scholar 

  • Fawkner SG, Armstrong N (2004) Longitudinal changes in the kinetic response to heavy-intensity exercise in children. J Appl Physiol 97:460–466. doi:10.1152/japplphysiol.00784.2003

    Article  PubMed  Google Scholar 

  • Fawkner SG, Armstrong N, Potter CR, Welsman JR (2002) Oxygen uptake kinetics in children and adults after the onset of moderate-intensity exercise. J Sports Sci 20:319–326. doi:10.1080/026404102753576099

    Article  PubMed  Google Scholar 

  • Fleischman A, Makimura H, Stanley TL, McCarthy MA, Kron M, Sun N, Chuzi S, Hrovat MI, Systrom DM, Grinspoon SK (2010) Skeletal muscle phosphocreatine recovery after submaximal exercise in children and young and middle-aged adults. J Clin Endocrinol Metab 95:E69–E74

    Article  PubMed  Google Scholar 

  • Forbes SC, Raymer G, Kowalchuk J, Thompson R, Marsh G (2008) Effects of recovery time on phosphocreatine kinetics during repeated bouts of heavy-intensity exercise. Eur J Appl Physiol 103:665–675

    Article  PubMed  CAS  Google Scholar 

  • Gießing J (2003) Trainingsplanung und –steuerung beim Muskelaufbautraining. Das Konzept vom individuellen hypothetischen Maximalgewicht (h1RM) als methodische Alternative. Leistungssport 4/2003:26–31

    Google Scholar 

  • Haralambie G (1982) Enzyme activities in skeletal muscle of 13–15 years old adolescents. Bull Eur Physiopathol Respir 18:65–74

    PubMed  CAS  Google Scholar 

  • Hebestreit H, Mimura K, Bar-Or O (1993) Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol 74:2875–2880

    PubMed  CAS  Google Scholar 

  • Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6:117–130. doi:10.1055/s-2008-1025824

    Article  PubMed  CAS  Google Scholar 

  • Inbar O, Bar-Or O, Skinner JS (1996) The Wingate anaerobic test. Human Kinetics, Champaign

    Google Scholar 

  • Kaczor JJ, Ziolkowski W, Popinigis J, Tarnopolsky MA (2005) Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr Res 57:331–335. doi:10.1203/01.PDR.0000150799.77094.DE

    Article  PubMed  CAS  Google Scholar 

  • Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63

    PubMed  CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Styles P, Radda GK (1993) The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR Biomed 6:73–83

    Article  PubMed  CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Thompson C, Hands L, Rajagopalan B, Styles P, Radda GK (2005) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310

    Article  Google Scholar 

  • Kuno S, Takahashi H, Fujimoto K, Akima H, Miyamura M, Nemoto I, Itai Y, Katsuta S (1995) Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol Occup Physiol 70:301–304

    Article  PubMed  CAS  Google Scholar 

  • Larson-Meyer DE, Newcomer BR, Hunter GR, Joanisse DR, Weinsier RL, Bamman MM (2001) Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism. Muscle Nerve 24:1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D (2009) Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: a 31P-MRS study. Magn Reson Med 62:840–854. doi:10.1002/mrm.22085

    Article  PubMed  CAS  Google Scholar 

  • Lexell J, Sjostrom M, Nordlund AS, Taylor CC (1992) Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 15:404–409. doi:10.1002/mus.880150323

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein JM (1990) The purine nucleotide cycle revised. Int J Sports Med 11:37–46

    Article  Google Scholar 

  • Malina RM (1969) Quantification of fat, muscle and bone in man. Clin Orthop 65:9–38

    PubMed  CAS  Google Scholar 

  • Malina RM, Bouchard C, Bar-Or O (2004) Growth, maturation, and physical activity. Human Kinetics, Champaign

    Google Scholar 

  • McCreary CR, Chilibeck PD, Marsh GD, Paterson DH, Cunningham DA, Thompson RT (1996) Kinetics of pulmonary oxygen uptake and muscle phosphates during moderate-intensity calf exercise. J Appl Physiol 81:1331–1338

    PubMed  CAS  Google Scholar 

  • Meyer RA (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254:C548–C553

    PubMed  CAS  Google Scholar 

  • Paraschos I, Hassani A, Bassa E, Hatzikotoulas K, Patikas D, Kotzamanidis C (2007) Fatigue differences between adults and prepubertal males. Int J Sports Med 28:958–963

    Article  PubMed  CAS  Google Scholar 

  • Petersen S, Gaul C, Stanton M, Hanstock C (1999) Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 87:2151–2156

    PubMed  CAS  Google Scholar 

  • Ratel S, Bedu M, Hennegrave A, Dore E, Duche P (2002a) Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med 23:397–402

    Article  PubMed  CAS  Google Scholar 

  • Ratel S, Duche P, Hennegrave A, Van Praagh E, Bedu M (2002b) Acid–base balance during repeated cycling sprints in boys and men. J Appl Physiol 92:479–485

    PubMed  CAS  Google Scholar 

  • Ratel S, Duche P, Williams CA (2006) Muscle fatigue during high-intensity exercise in children. Sports Med 36:1031–1065

    Article  PubMed  Google Scholar 

  • Ratel S, Tonson A, Le Fur Y, Cozzone P, Bendahan D (2008) Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P-MRS study. Appl Physiol Nutr Metab 33:720–727

    Article  PubMed  CAS  Google Scholar 

  • Rico-Sanz J, Zehnder M, Buchli R, Kühne G, Boutellier U (1999) Noninvasive measurement of muscle high-energy phosphates and glycogen concentrations in elite soccer players by 31P-and 13C-MRS. Med Sci Sports Exerc 31:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    Article  PubMed  CAS  Google Scholar 

  • Rossiter H, Ward S, Kowalchuk J, Howe F, Griffiths J, Whipp B (2002) Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on-and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Roussel M, Bendahan D, Mattei J, Le Fur Y, Cozzone P (2000) 31P Magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta 1457:18–26

    Article  PubMed  CAS  Google Scholar 

  • Taylor D, Bore PJ, Styles P, Gadian DG, Radda G (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    PubMed  CAS  Google Scholar 

  • Taylor D, Kemp G, Thompson C, Radda G (1997) Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 174:321–324

    Article  PubMed  CAS  Google Scholar 

  • Tonson A, Ratel S, Le Fur Y, Vilmen C, Cozzone PJ, Bendahan D (2010) Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis. J Appl Physiol 109:1769–1778

    Article  PubMed  Google Scholar 

  • Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human muscle. Am J Physiol 276:R1682–R1690

    PubMed  CAS  Google Scholar 

  • Van Ekeren GJ, Cornelissen EA, Stadhouders AM, Sengers RC (1991) Increased volume density of peripheral mitochondria in skeletal muscle of children with exercise intolerance. Eur J Pediatr 150:744–750

    Article  PubMed  Google Scholar 

  • Van Praagh E, Doré E (2002) Short-term muscle power during growth and maturation. Sports Med 32:701–728

    Article  PubMed  Google Scholar 

  • Willcocks RJ, Williams CA, Barker AR, Fulford J, Armstrong N (2010) Age- and sex-related differences in muscle phosphocreatine and oxygenation kinetics during high-intensity exercise in adolescents and adults. NMR Biomed 23:569–577

    Article  PubMed  CAS  Google Scholar 

  • Williams CA, Carter H, Jones AM, Doust JH (2001) Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol 90:1700–1706

    PubMed  CAS  Google Scholar 

  • Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S (2005) Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc 37:505–512

    Article  PubMed  Google Scholar 

  • Zanconato S, Buchthal S, Barstow TJ, Cooper D (1993) 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 74:2214–2218

    PubMed  CAS  Google Scholar 

  • Zange J, Beisteiner M, Müller K, Shushakov V, Maassen N (2008) Energy metabolism in intensively exercising calf muscle under a simulated orthostasis. Pflügers Arch Eur J Physiol 455:1153–1163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kappenstein.

Additional information

Communicated by Peter Krustrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappenstein, J., Ferrauti, A., Runkel, B. et al. Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults. Eur J Appl Physiol 113, 2769–2779 (2013). https://doi.org/10.1007/s00421-013-2712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2712-x

Keywords

Navigation