Skip to main content

Advertisement

Log in

Macular thickness after uneventful cataract surgery determined by optical coherence tomography

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Using standardized macular optical coherence tomography (OCT) in the postoperative period, subclinical changes in macular thickness can be detected. With this method, postoperative development of macular thickness in healthy eyes is evaluated. The repeatability of the method and the influence of selected surgical (phaco time and phaco energy) and biometric parameters (axial length and anterior chamber depth) on the results were assessed.

Methods

In a prospective study, 33 patients without macular pathology in both eyes were examined. Phacoemulsification and intraocular lens (IOL) implantation was performed in one eye, and the contralateral eye served as control. OCT (StratusOCT; Zeiss, Dublin, CA, USA), mean minimal foveal thickness (MMFT) and mean foveal thickness (MFT) were measured preoperatively, at 1 day, 1 week and 6 weeks postoperatively.

At these visits, the best-corrected visual acuity (BCVA) tests and slit-lamp examination were performed. To assess the influence on foveal thickness ocular axial length, anterior chamber depth, phacotime and energy were documented. Statistical analysis using parametric tests was carried out with standard statistical software (SPSS11, BIAS).

Results

MMFT of the operated eyes and the intraindividual difference of MMFT increased significantly at one day (+12.31 ± 24.2 μm, P < 0.001) and 6 weeks (+6.76 ± 22.6 μm, P = 0.009). MFT in the operated eyes and intraindividual difference of MFT rose significantly at 1 day, 1 week and 6 weeks (1 day: +10.66 ± 20.8 μm, P = 0,026; 1 week: +15.23 ± 19.7 μm; 6 weeks: +17.33 ± 14.81 μm, P < 0.001). Repeatability was better for MFT in controls (ICR = 0.92) than for MMFT in controls (ICR = 0.77). No clinical cystoid macular edema was diagnosed in this study. No correlation between macular thickening and visual acuity and selected surgical and biometrical parameters could be found.

Conclusions

After cataract surgery, a mild increase of foveal thickness without impact on visual acuity could be observed. This increase may be due to both subclinical changes and to influence of changes in media opacity on the measurement technique. Surgical and biometric parameters such as phacotime and energy and axial length did not correlate to the degree of macular thickening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mentes J, Erakgun T, Afrashi F, Kerci G (2003) Incidence of cystoid macular edema after uncomplicated phacoemulsification. Ophthalmologica 217(6):408–412

    Article  PubMed  Google Scholar 

  2. Francois J, Verbraeken H (1980) Complications in 1,000 consecutive intracapsular cataract extractions. Ophthalmologica 180(3):121–128

    Article  PubMed  CAS  Google Scholar 

  3. Norregaard JC, Bernth-Petersen P, Bellan L et al (1999) Intraoperative clinical practice and risk of early complications after cataract extraction in the United States, Canada, Denmark, and Spain. Ophthalmology 106(1):42–48

    Article  PubMed  CAS  Google Scholar 

  4. Ursell PG, Spalton DJ, Whitcup SM, Nussenblatt RB (1999) Cystoid macular edema after phacoemulsification: relationship to blood-aqueous barrier damage and visual acuity. J Cataract Refract Surg 25(11):1492–1497

    Article  PubMed  CAS  Google Scholar 

  5. Browning DJ, McOwen MD, Bowen RM Jr, O’Marah TL (2004) Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology 111(4):712–715

    Article  PubMed  Google Scholar 

  6. Brown JC, Solomon SD, Bressler SB et al (2004) Detection of diabetic foveal edema: contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol 122(3):330–335

    Article  PubMed  Google Scholar 

  7. Schaudig U, Scholz F, Lerche RC, Richard G (2004) Optical coherence tomography for macular edema. Classification, quantitative assessment, and rational usage in the clinical practice. Ophthalmologe 101(8):785–793

    Article  PubMed  CAS  Google Scholar 

  8. Sourdille P, Santiago PY (1999) Optical coherence tomography of macular thickness after cataract surgery. J Cataract Refract Surg 25(2):256–261

    Article  PubMed  CAS  Google Scholar 

  9. Lobo CL, Faria PM, Soares MA et al (2004) Macular alterations after small-incision cataract surgery. J Cataract Refract Surg 30(4):752–760

    Article  PubMed  Google Scholar 

  10. Ching HY, Wong AC, Wong CC et al (2006) Cystoid macular oedema and changes in retinal thickness after phacoemulsification with optical coherence tomography. Eye 20(3):297–303

    Article  PubMed  Google Scholar 

  11. Gobel W, Hartmann F, Haigis W (2001) Determination of retinal thickness in relation to the age and axial length using optical coherence tomography. Ophthalmologe 98(2):157–162

    Article  PubMed  CAS  Google Scholar 

  12. Grewing R, Becker H (2000) Retinal thickness immediately after cataract surgery measured by optical coherence tomography. Ophthalmic Surg Lasers 31(3):215–217

    PubMed  CAS  Google Scholar 

  13. Hee MR (2005) Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol 139(1):154–155

    Article  PubMed  Google Scholar 

  14. Biro Z, Balla Z, Kovacs B (2006) Change of foveal and perifoveal thickness measured by OCT after phacoemulsification and IOL implantation. Eye [Epub ahead of print]

  15. Hee MR, Puliafito CA, Wong C et al (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113(8):1019–1029

    PubMed  CAS  Google Scholar 

  16. Sadda SR, Wu Z, Walsh AC et al (2006) Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 113(2):285–293

    Article  PubMed  Google Scholar 

  17. Ray R, Stinnett SS, Jaffe GJ (2005) Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol 139(1):18–29

    Article  PubMed  Google Scholar 

  18. Ball JL, Barrett GD (2006) Prospective randomized controlled trial of the effect of intracameral vancomycin and gentamicin on macular retinal thickness and visual function following cataract surgery. J Cataract Refract Surg 32(5):789–794

    Article  PubMed  Google Scholar 

  19. van Velthoven ME, van der Linden MH, de Smet MD et al (2006) Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol 90:1159–1162

    Article  Google Scholar 

  20. Chan A, Duker JS (2005) A standardized method for reporting changes in macular thickening using optical coherence tomography. Arch Ophthalmol 123(7):939–943

    Article  PubMed  Google Scholar 

  21. Chan A, Duker JS, Ko TH et al (2006) Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 124(2):193–198

    Article  PubMed  Google Scholar 

  22. Paunescu LA, Schuman JS, Price LL et al (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 45(6):1716–1724

    Article  PubMed  Google Scholar 

  23. Sacu S, Findl O, Linnola RJ (2005) Optical coherence tomography assessment of capsule closure after cataract surgery. J Cataract Refract Surg 31(2):330–336

    Article  PubMed  Google Scholar 

  24. Luo HD, Gazzard G, Fong A et al (2006) Myopia, axial length, and OCT characteristics of the macula in Singaporean children. Invest Ophthalmol Vis Sci 47(7):2773–2781

    Article  PubMed  Google Scholar 

  25. Chamberlain MD, Guymer RH, Dirani M et al (2006) Heritability of macular thickness determined by optical coherence tomography. Invest Ophthalmol Vis Sci 47(1):336–340

    Article  PubMed  Google Scholar 

  26. Hougaard JL, Wang M, Sander B, Larsen M (2001) Effects of pseudophakic lens capsule opacification on optical coherence tomography of the macula. Curr Eye Res 23(6):415–421

    Article  PubMed  CAS  Google Scholar 

  27. Larsen M, Wang M, Sander B (2005) Overnight thickness variation in diabetic macular edema. Invest Ophthalmol Vis Sci 46(7):2313–2316

    Article  PubMed  Google Scholar 

  28. Lim MC, Hoh ST, Foster PJ et al (2005) Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 46(3):974–978

    Article  PubMed  Google Scholar 

  29. Paques M, Massin P, Sahel JA et al (2005) Circadian fluctuations of macular edema in patients with morning vision blurring: correlation with arterial pressure and effect of light deprivation. Invest Ophthalmol Vis Sci 46(12):4707–4711

    Article  PubMed  Google Scholar 

  30. Polito A, Del Borrello M, Polini G et al (2006) Diurnal variation in clinically significant diabetic macular edema measured by the Stratus OCT. Retina 26(1):14–20

    Article  PubMed  Google Scholar 

  31. Savini G, Zanini M, Barboni P (2006) Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by stratus OCT. J Glaucoma 15(4):336–340

    Article  PubMed  Google Scholar 

  32. Sadda SR, Tan O, Walsh AC et al (2006) Automated detection of clinically significant macular edema by grid scanning optical coherence tomography. Ophthalmology 113(7):1196 e1–2

    Article  Google Scholar 

  33. Ohrloff C, Schalnus R, Rothe R, Spitznas M (1990) Role of the posterior capsule in the aqueous-vitreous barrier in aphakic and pseudophakic eyes. J Cataract Refract Surg 16(2):198–201

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kohnen.

Additional information

The authors have no financial or proprietary interest in any material or method mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Jagow, B., Ohrloff, C. & Kohnen, T. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 245, 1765–1771 (2007). https://doi.org/10.1007/s00417-007-0605-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0605-6

Keywords

Navigation