Skip to main content

Advertisement

Log in

Medical ozone therapy decreases postoperative uterine adhesion formation in rats

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Various studies have been performed to find out novel treatment strategies to prevent postoperative adhesion formation. Ozone therapy (OT) is shown to reduce inflammation in several pathological conditions. Therefore, we aimed to evaluate the efficacy of OT in a rat model of experimental uterine adhesion (EUA).

Methods

Thirty female Wistar rats (200–250 g) were divided into three groups: sham, EUA and EUA+OT. EUA and EUA+OT groups were subjected to the postoperative adhesion procedure by bipolar coagulation on the uterine horns and corresponding pelvic sidewall parietal peritoneum. EUA+OT group received 0.7 mg/kg daily single dose for 3 days of ozone/oxygen mixture intraperitoneally after adhesion induction. All animals were killed on the 7th day and uterine adhesions were scored. Uterine tissues and peritoneal washing fluid were harvested for all analyses.

Results

Uterine malondialdehyde levels in the EUA group were significantly higher compared to the other groups. However, in the EUA group, uterine superoxide dismutase and glutathione peroxidase activities were lower than in other groups. Peritoneal fluid TNF-α levels were found to be significantly different for all groups (p < 0.001). Macroscopic total adhesion score was significantly higher in the EUA group compared to the other groups (p < 0.001). But, total score in the EUA+OT group was lower than in the EUA group (p = 0.006).

Conclusions

Medical OT prevents postoperative uterine adhesions by modulating TNF-α levels and oxidative/antioxidative status in an experimental uterine adhesion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Binda MM, Molinas CR, Koninckx PR (2003) Reactive oxygen species and adhesion formation: clinical implications in adhesion prevention. Hum Reprod 18:2503–2507

    Article  PubMed  CAS  Google Scholar 

  2. Rajab TK, Ahmad UN, Kelly E (2010) Implications of late complications from adhesions for preoperative informed consent. J R Soc Med 103:317–321

    Article  PubMed  Google Scholar 

  3. Kelekci S, Uygur D, Yilmaz B et al (2007) Comparison of human amniotic membrane and hyaluronate/carboxymethylcellulose membrane for prevention of adhesion formation in rats. Arch Gynecol Obstet 276:355–359

    Article  PubMed  CAS  Google Scholar 

  4. Roy S, Clark CJ, Mohebali K et al (2004) Reactive oxygen species and EGR-1 gene expression in surgical postoperative peritoneal adhesions. World J Surg 28:316–320

    Article  PubMed  Google Scholar 

  5. ten Raa S, van den Tol MP, Sluiter W et al (2006) The role of neutrophils and oxygen free radicals in post-operative adhesions. J Surg Res 136:45–52

    Article  PubMed  Google Scholar 

  6. Gotloib L, Wajsbrot V, Cuperman Y et al (2004) Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. J Lab Clin Med 143:31–40

    Article  PubMed  CAS  Google Scholar 

  7. Kaidi AA, Nazzal M, Gurchumelidze T et al (1995) Preoperative administration of antibodies against tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) and their impact on peritoneal adhesion formation. Am Surg 61:569–572

    PubMed  CAS  Google Scholar 

  8. Mirastschijski U, Johannesson K, Jeppsson B et al (2005) Effect of a matrix metalloproteinase activity and TNF-alpha converting enzyme inhibitor on intra-abdominal adhesions. Eur Surg Res 37:68–75

    Article  PubMed  CAS  Google Scholar 

  9. Saba AA, Godziachvili V, Mavani AK et al (1998) Serum levels of interleukin 1 and tumor necrosis factor alpha correlate with peritoneal adhesion grades in humans after major abdominal surgery. Am Surg 64:734–736 discussion 737

    PubMed  CAS  Google Scholar 

  10. Williams RS, Rossi AM, Chegini N et al (1992) Effect of transforming growth factor beta on postoperative adhesion formation and intact peritoneum. J Surg Res 52:65–70

    Article  PubMed  CAS  Google Scholar 

  11. Cheong YC, Laird SM, Shelton JB et al (2002) The correlation of adhesions and peritoneal fluid cytokine concentrations: a pilot study. Hum Reprod 17:1039–1045

    Article  PubMed  CAS  Google Scholar 

  12. Kurukahvecioglu O, Koksal H, Gulbahar O et al (2007) Infliximab “TNF-alpha antagonist” decreases intraabdominal adhesions. Saudi Med J 28:1830–1835

    PubMed  Google Scholar 

  13. Bocci V (2004) Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediators Inflamm 13:3–11

    Article  PubMed  CAS  Google Scholar 

  14. Bocci VA (2006) Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res 37:425–435

    Article  PubMed  CAS  Google Scholar 

  15. Oter S, Korkmaz A (2006) Relevance of hyperbaric oxygen to ozone therapy. Arch Med Res 37:917–918 author reply 919

    Article  PubMed  Google Scholar 

  16. Bocci V (1996) Does ozone therapy normalize the cellular redox balance? Implications for therapy of human immunodeficiency virus infection and several other diseases. Med Hypotheses 46:150–154

    Article  PubMed  CAS  Google Scholar 

  17. Guven A, Gundogdu G, Vurucu S et al (2009) Medical ozone therapy reduces oxidative stress and intestinal damage in an experimental model of necrotizing enterocolitis in neonatal rats. J Pediatr Surg 44:1730–1735

    Article  PubMed  Google Scholar 

  18. Kesik V, Uysal B, Kurt B et al (2009) Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer Biol Ther 8:1623–1628

    Article  PubMed  CAS  Google Scholar 

  19. Uysal B, Yasar M, Ersoz N et al (2010) Efficacy of hyperbaric oxygen therapy and medical ozone therapy in experimental acute necrotizing pancreatitis. Pancreas 39:9–15

    Article  PubMed  CAS  Google Scholar 

  20. Di Filippo C, Luongo M, Marfella R, Ferraraccio F, Lettieri B, Capuano A, Rossi F, D’Amico M (2010) Oxygen/ozone protects the heart from acute myocardial infarction through local increase of eNOS activity and endothelial progenitor cells recruitment. Naunyn Schmiedebergs Arch Pharmacol 382:287–291

    Article  PubMed  CAS  Google Scholar 

  21. Chu DI, Lim R, Heydrick S et al (2011) N-acetyl-l-cysteine decreases intra-abdominal adhesion formation through the upregulation of peritoneal fibrinolytic activity and antioxidant defenses. Surgery 149:801–812

    Article  PubMed  Google Scholar 

  22. Cetinkursun S, Demirbag S, Tasdemir U et al (2005) Comparison of hyaluronate/carboxymethylcellulose membrane and melatonin for prevention of adhesion formation in a rat model. Hum Reprod 20:2021–2024

    Article  PubMed  Google Scholar 

  23. Basbug M, Aygen E, Tayyar M et al (1998) Hyaluronic acid plus heparin for improved efficacy in prevention of adhesion formation in rat uterine horn model. Eur J Obstet Gynecol Reprod Biol 78:109–112

    Article  PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  26. Durak I, Yurtarslanl Z, Canbolat O et al (1993) A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 214:103–104

    Article  PubMed  CAS  Google Scholar 

  27. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  28. Leach RE, Burns JW, Dawe EJ et al (1998) Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel. Fertil Steril 69:415–418

    Article  PubMed  CAS  Google Scholar 

  29. Di Filippo C, Capuano A, Rinaldi B et al (2011) Intraperitoneal oxygen/ozone treatment decreases the formation of experimental postsurgical peritoneal adhesions and the levels/activity of the local ubiquitin–proteasome system. Mediators Inflamm 2011:606718

    PubMed  Google Scholar 

  30. Di Domenico I, Dimarzio G, Pepe L, Lettieri B (2011) Comparision between O2 and oxygen/ozone mixture treatment in decreasing postsurgical peritoneal adhesion and the levels/activity of local ubiquitine–proteasome system.Translational Medicine @ UniSa, Special Issues 1(4 Poster)

  31. Yesildaglar N, Ordonez JL, Laermans I et al (1999) The mouse as a model to study adhesion formation following endoscopic surgery: a preliminary report. Hum Reprod 14:55–59

    Article  PubMed  CAS  Google Scholar 

  32. Yesildaglar N, Koninckx PR (2000) Adhesion formation in intubated rabbits increases with high insufflation pressure during endoscopic surgery. Hum Reprod 15:687–691

    Article  PubMed  CAS  Google Scholar 

  33. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:395–418

    PubMed  CAS  Google Scholar 

  34. Dijkgraaf LC, Zardeneta G, Cordewener FW et al (2003) Crosslinking of fibrinogen and fibronectin by free radicals: a possible initial step in adhesion formation in osteoarthritis of the temporomandibular joint. J Oral Maxillofac Surg 61:101–111

    Article  PubMed  Google Scholar 

  35. Bertuglia S, Colantuoni A, Intaglietta M (1993) Effect of leukocyte adhesion and microvascular permeability on capillary perfusion during ischemia–reperfusion injury in hamster cheek pouch. Int J Microcirc Clin Exp 13:13–26

    PubMed  CAS  Google Scholar 

  36. Demirbag S, Uysal B, Guven A et al (2010) Effects of medical ozone therapy on acetaminophen-induced nephrotoxicity in rats. Ren Fail 32:493–497

    Article  PubMed  CAS  Google Scholar 

  37. Bocci V, Zanardi I, Travagli V (2011) Has oxygen–ozone therapy a future in medicine? J Exp Integr Med 1:5–11

    Article  Google Scholar 

  38. Souza YM, Fontes B, Martins JO, Sannomiya P, Brito GS, Younes RN, Rasslan S (2010) Evaluation of the effects of ozone therapy in the treatment of intra-abdominal infection in rats. Clinics (Sao Paulo) 65:195–202

    Article  Google Scholar 

  39. Rodríguez ZZ, Guanche D, Alvarez RG, Martinez Y, Alonso Y, Schulz S (2011) Effects of ozone oxidative preconditioning on different hepatic biomarkers of oxidative stress in endotoxic shock in mice. Toxicol Mech Methods 21:236–240

    Article  PubMed  Google Scholar 

  40. Guven A, Gundogdu G, Sadir S et al (2008) The efficacy of ozone therapy in experimental caustic esophageal burn. J Pediatr Surg 43:1679–1684

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzi Demirbag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uysal, B., Demirbag, S., Poyrazoglu, Y. et al. Medical ozone therapy decreases postoperative uterine adhesion formation in rats. Arch Gynecol Obstet 286, 1201–1207 (2012). https://doi.org/10.1007/s00404-012-2435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-012-2435-y

Keywords

Navigation