Skip to main content

Advertisement

Log in

Can monocyte to HDL cholesterol ratio and monocyte to lymphocyte ratio be markers for inflammation and oxidative stress in patients with vitiligo? A preliminary study

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 09 February 2021

Abstract

Both systemic inflammation and oxidative stress play crucial roles in the pathogenesis of vitiligo. In recent studies, monocyte to high-density lipoprotein cholesterol ratio (MHR), monocyte to lymphocyte ratio (MLR), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), mean platelet volume (MPV) and plateletcrit (PCT) have been shown to reflect inflammation and oxidative stress in chronic inflammatory and autoimmune diseases. In this study, we aimed to investigate the hematological and inflammatory parameters in patients with vitiligo and to evaluate their possible relationship with disease severity. The parameters including MHR, MLR, NLR, PLR, MPV, and PCT were retrospectively investigated in patients with vitiligo and healthy controls. Disease severity was evaluated using the vitiligo extent tensity index (VETI) score. A total of 180 patients with vitiligo, and age–gender-matched 180 healthy controls were enrolled in the study. MHR, MLR, PLR, PCT values were found to be significantly higher in patients with vitiligo (p < 0.05). MPV and NLR values showed no statistically significant difference between the two groups. A positive correlation was also detected between MHR and MLR values, disease duration, and VETI score (p < 0.05). We suggest that MHR and MLR can be used as markers of inflammation and oxidative stress in patients with vitiligo. Both markers may also reflect disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 

Similar content being viewed by others

References

  1. Ortonne JP, Bahadoran P, Fitzpatrick TB, Mosher DB, Hory Y (2003) Hypomelanoses and hypermelanoses. In: Freedberg IM, Eisen AZ, Wolff K, et al. (eds) Fitzpatrick’s dermatology in general medicine, 6th edn. The McGraw-Hill Companies Inc, USA, pp 836–881

    Google Scholar 

  2. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V (2011) Vitiligo: a comprehensive overview: part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol 65:473–491. https://doi.org/10.1016/j.jaad.2010.11.061

    Article  PubMed  Google Scholar 

  3. Ezzedine K, Lim H, Suzuki T, Katayama I, Hamzavi I, Lan C et al (2012) Revised classification/nomenclature of vitiligo and related issues: the vitiligo global issues consensus conference. Pigm Cell Melanoma R 25:E1–E13. https://doi.org/10.1111/j.1755-148X.2012.00997.x

    Article  CAS  Google Scholar 

  4. Njoo MD, Westerhof W (2001) Vitiligo: pathogenesis and treatment. Am J Clin Dermat 2(3):167–181. https://doi.org/10.2165/00128071-200102030-00006

    Article  CAS  Google Scholar 

  5. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S et al (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109:310–313. https://doi.org/10.1111/1523-1747.ep12335801

    Article  CAS  PubMed  Google Scholar 

  6. Schallreuter K (1999) Successful treatment of oxidative stress in vitiligo. Skin Pharmacol Phys 12:132–138. https://doi.org/10.1159/000029867

    Article  CAS  Google Scholar 

  7. Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarullah M, Ramachandran A et al (2013) Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol 22:245–250. https://doi.org/10.1111/exd.12103

    Article  CAS  PubMed  Google Scholar 

  8. Ancuta P, Wang J, Gabuzda D (2006) CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. J Leukoc Biol 80:1156–1164. https://doi.org/10.1189/jlb.0206125

    Article  CAS  PubMed  Google Scholar 

  9. Hessler JR, Robertson AL Jr, Chisolm GM (1979) LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 32:213–229. https://doi.org/10.1016/0021-9150(79)90166-7

    Article  CAS  PubMed  Google Scholar 

  10. Li XP, Zhao SP, Zhang XY, Liu L, Gao M, Zhou QC (2000) Protective effect of high density lipoprotein on endothelium-dependent vasodilatation. Int J Cardiol 73:231–236. https://doi.org/10.1016/S0167-5273(00)00221-7

    Article  CAS  PubMed  Google Scholar 

  11. Parthasarathy S, Barnett J, Fong LG (1990) High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1044(2):275–283. https://doi.org/10.1016/0005-2760(90)90314-N

    Article  CAS  PubMed  Google Scholar 

  12. Canpolat U, Aytemir K, Yorgun H, Şahiner L, Kaya EB, Çay S et al (2015) The role of preprocedural monocyte-to-high-density lipoprotein ratio in prediction of atrial fibrillation recurrence after cryoballoon-based catheter ablation. Ep Europace 17:1807–1815. https://doi.org/10.1093/europace/euu291

    Article  Google Scholar 

  13. Canpolat U, Çetin EH, Cetin S, Aydin S, Akboga MK, Yayla C et al (2016) Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation. Clin Appl Thromb Hemost 22:476–482. https://doi.org/10.1177/1076029615594002

    Article  CAS  PubMed  Google Scholar 

  14. Kanbay M, Solak Y, Unal HU, Kurt YG, Gok M, Cetinkaya H et al (2014) Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol 46:1619–1625. https://doi.org/10.1007/s11255-014-0730-1

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Zeng H, Yang J, Lu Y, Zhang D, Wang J et al (2018) Survival and prognostic analysis of preoperative inflammatory markers in patients undergoing surgical resection for laryngeal squamous cell carcinoma. BMC Cancer 18:816. https://doi.org/10.1186/s12885-018-4730-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Du J, Chen S, Shi J, Zhu X, Ying H, Zhang Y et al (2017) The association between the lymphocyte-monocyte ratio and disease activity in rheumatoid arthritis. Clin Rheumatol 36:2689–2695. https://doi.org/10.1007/s10067-017-3815-2

    Article  PubMed  Google Scholar 

  17. Naranbhai V, Kim S, Fletcher H, Cotton MF, Violari A, Mitchell C et al (2014) The association between the ratio of monocytes: lymphocytes at age 3 months and risk of tuberculosis (TB) in the first two years of life. BMC Med 12:120. https://doi.org/10.1186/s12916-014-0120-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan C, Li N, Mao X, Liu Z, Ou W, Sy W (2017) Elevated pretreatment neutrophil/white blood cell ratio and monocyte/lymphocyte ratio predict poor survival in patients with curatively resected non-small cell lung cancer: results from a large cohort. Thoracic Cancer 8(4):350–358. https://doi.org/10.18632/oncotarget.14136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imtiaz F, Shafique K, Mirza SS, Ayoob Z, Vart P, Rao S (2012) Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int Archiv Med 5(1):2. https://doi.org/10.1186/1755-7682-5-2

    Article  Google Scholar 

  20. Asahina A, Kubo N, Umezawa Y, Honda H, Yanaba K, Nakagawa H (2017) Neutrophil–lymphocyte ratio, platelet–lymphocyte ratio and mean platelet volume in Japanese patients with psoriasis and psoriatic arthritis: response to therapy with biologics. J Dermatol 44:1112–1121. https://doi.org/10.1111/1346-8138.13875

    Article  CAS  PubMed  Google Scholar 

  21. Briggs C (2009) Quality counts: new parameters in blood cell counting. Int J Lab Hematol 31:277–297. https://doi.org/10.1111/j.1751-553X.2009.01160.x

    Article  CAS  PubMed  Google Scholar 

  22. Erre GL, Paliogiannis P, Castagna F, Mangoni AA, Carru C, Passiu G et al (2019) Meta-analysis of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in rheumatoid arthritis. Eur J Clin Invest 49:e13037. https://doi.org/10.1111/eci.13037

    Article  PubMed  Google Scholar 

  23. Tang J, Gao X, Zhi M, Zhou HM, Zhang M, Chen HW et al (2015) Plateletcrit: a sensitive biomarker for evaluating disease activity in C rohn’s disease with low hs-CRP. J Digest Dis 16:118–124. https://doi.org/10.1111/1751-2980.12225

    Article  CAS  Google Scholar 

  24. Kridin K, Shihade W, Zelber-Sagi S (2018) Mean platelet volume in pemphigus vulgaris. Angiology 69:303–307. https://doi.org/10.1177/0003319717718329

    Article  PubMed  Google Scholar 

  25. Pancar GS, Eyupoglu O (2016) Red cell distribution width and mean platelet volume in patients with pityriasis rosea. J Clin Med Res 8(6):445. https://doi.org/10.1470/jocmr2535w

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vaya A, Rivera L, Todoli J, Hernandez JL, Laiz B, Ricart JM (2014) Haematological, biochemical and inflammatory parameters in inactive Behçet’s disease. Its association with red blood cell distribution width. Clin Hemorheol Micro 56:319–324. https://doi.org/10.3233/CH-131744

    Article  CAS  Google Scholar 

  27. Feily A (2014) Vitiligo Extent Tensity Index (VETI) score: a new definition, assessment and treatment evaluation criteria in vitiligo. Dermatol Pract Concept 4:81. https://doi.org/10.5826/dpc.0404a18

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spritz RA (2012) Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol 132:268–273. https://doi.org/10.1038/jid.2011.321

    Article  CAS  PubMed  Google Scholar 

  29. Harris JE (2016) Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev 269:11–25. https://doi.org/10.1111/imr.12369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richmond JM, Frisoli ML, Harris JE (2013) Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol 25:676–682. https://doi.org/10.1016/j.coi.2013.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pietrzak A, Bartosińska J, Hercogová J, Lotti TM, Chodorowska G (2012) Metabolic syndrome in vitiligo. Dermatol Ther 25:S41–S43. https://doi.org/10.1111/dth.12012

    Article  PubMed  Google Scholar 

  32. Pietrzak A, Lecewicz-Toruń B, Urban J (2000) Comparison of serum lipid in girls affected with vitiligo and control group. Annales Universitatis Mariae Curie-Sklodowska Sectio D: Medicina 55:269–274

    CAS  Google Scholar 

  33. Tu CX, Gu JS, Lin XR (2003) Increased interleukin-6 and granulocyte–macrophage clony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci 31:73–78. https://doi.org/10.1016/S0923-1811(02)00151-2

    Article  CAS  PubMed  Google Scholar 

  34. Ala Y, Pasha MK, Rao RN, Komaravalli PL, Jahan P (2015) Association of IFN-γ: IL-10 cytokine ratio with nonsegmental vitiligo pathogenesis. Autoimmune Dis 2015:423490. https://doi.org/10.1155/2015/423490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lotti T, D’Erme AM (2014) Vitiligo as a systemic disease. Clin Dermatol 32:430–434. https://doi.org/10.1016/j.clindermatol.2013.11.011

    Article  PubMed  Google Scholar 

  36. Balta I, Balta S, Demirkol S, Ozturk C, Celik T (2014) Neutrophil-to-Lymphocyte Ratio May Predict Subclinical Atherosclerosis in Patients with Psoriasis. Echocardiography 31:1166–1167. https://doi.org/10.1111/echo.12668

    Article  PubMed  Google Scholar 

  37. Hoffmann JJ, Nabbe KC, van den Broek NM (2015) Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV). Clin Chem Lab Med 53:2015–2019. https://doi.org/10.1515/cclm-2015-0155

    Article  CAS  PubMed  Google Scholar 

  38. Usta A, Avci E, Bulbul CB, Kadi H, Adali E (2018) The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome. Reprod Biol Endocrinol 16:34. https://doi.org/10.1186/s12958-018-0351-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yılmaz M, Kayançiçek H (2018) A new inflammatory marker: elevated monocyte to HDL cholesterol ratio associated with smoking. J Clin Med 7:76. https://doi.org/10.3390/jcm7040076

    Article  CAS  PubMed Central  Google Scholar 

  40. Acikgoz N, Kurtoğlu E, Yagmur J, Kapicioglu Y, Cansel M, Ermis N (2018) Elevated monocyte to high-density lipoprotein cholesterol ratio and endothelial dysfunction in Behçet disease. Angiology 69:65–70. https://doi.org/10.1177/0003319717704748

    Article  CAS  PubMed  Google Scholar 

  41. Karabay EA, Demir D, Çerman AA (2020) Evaluation of monocyte to high-density lipoprotein ratio, lymphocytes, monocytes, and platelets in psoriasis. Anais Brasileiros de Dermatologia 95:40–45. https://doi.org/10.1016/j.abd.2019.05.002

    Article  Google Scholar 

  42. Huang Y, Deng W, Zheng S, Feng F, Huang Z, Huang Q et al (2018) Relationship between monocytes to lymphocytes ratio and axial spondyloarthritis. Int Immunopharmacol 57:43–46. https://doi.org/10.1016/j.intimp.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  43. Xiang J, Zhou L, Li X, Bao W, Chen T, Xi X et al (2017) Preoperative monocyte-to-lymphocyte ratio in peripheral blood predicts stages, metastasis, and histological grades in patients with ovarian cancer. Transl Oncol 10:33–39. https://doi.org/10.1016/j.tranon.2016.10.006

    Article  PubMed  Google Scholar 

  44. Kim DS, Shin D, Lee MS, Kim HJ, Kim DY, Kim SM et al (2016) Assessments of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in Korean patients with psoriasis vulgaris and psoriatic arthritis. J Dermatol 43:305–310. https://doi.org/10.1111/1346-8138.13061

    Article  PubMed  Google Scholar 

  45. Li L, Xia Y, Chen C, Cheng P, Peng C (2015) Neutrophil-lymphocyte ratio in systemic lupus erythematosus disease: a retrospective study. Int J Clin Exp Med 8(7):11026

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Solak B, Dikicier BS, Cosansu NC, Erdem T (2017) Neutrophil to lymphocyte ratio in patients with vitiligo. Advances in Dermatology and Allergology/Postȩpy Dermatologii i Alergologii 34:468. https://doi.org/10.5114/ada.2017.71114

    Article  PubMed  PubMed Central  Google Scholar 

  47. İslamoğlu ZGK, Demirbaş A (2019) Mean platelet volume and platelet distribution width levels in discoid lupus erythematosus patients: a case-control study. J Surg Med 3:561–563. https://doi.org/10.28982/josam.599953

    Article  Google Scholar 

  48. Karagun E (2019) An Investigation of the Relationship between Involvement Sites in Vitiligo Patients and Autoimmune Diseases and Hematological Parameters. Int J Innov Res Med Sci 4:570–573. https://doi.org/10.23958/ijirms/vol04-i10/769

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Demirbaş.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest financial or otherwise related to the material presented herein.

Ethical approval

All the procedures followed the Helsinki declaration and the study was approved by the KTO Karatay University Institutional Review Board (Decision date and number: 2020/006).

Informed consent

Written Informed consent was also obtained from all the subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirbaş, A., Elmas, Ö.F., Atasoy, M. et al. Can monocyte to HDL cholesterol ratio and monocyte to lymphocyte ratio be markers for inflammation and oxidative stress in patients with vitiligo? A preliminary study. Arch Dermatol Res 313, 491–498 (2021). https://doi.org/10.1007/s00403-020-02129-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-020-02129-3

Keywords

Navigation