Skip to main content
Log in

Dosierung und Toxizität von Antirheumatika bei Niereninsuffizienz

Dosage and toxicity of antirheumatic drugs in renal insufficiency

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Patienten mit entzündlich-rheumatischen Systemerkrankungen haben häufig eine eingeschränkte Nierenfunktion, was mit einem erhöhten Risiko für medikamenteninduzierte Nebenwirkungen einhergeht. Die Datenlage hinsichtlich Therapieoptionen in dieser Patientenpopulation ist stark limitiert.

Methoden

Es wurde eine selektive Literaturrecherche zur Pharmakokinetik, Dosierung und Toxizität von Antirheumatika bei Niereninsuffizienz durchgeführt.

Ergebnisse

Nichtsteroidale Antirheumatika (NSAR), Zyklooxygenase(COX)-2-Hemmer, Gold und Ciclosporin sollten bei Patienten mit Niereninsuffizienz nur zurückhaltend eingesetzt werden, da sie mit einem erhöhten Risiko für nephrotoxische Nebenwirkungen einhergehen. Methotrexat sollte bei einer geschätzten glomerulären Filtrationsrate (eGFR) < 45 ml/min nicht eingesetzt werden, da die Pharmakokinetik nicht vorhersehbar ist und eine fatale Panzytopenie resultieren kann. Die Dosis von Sulfasalazin, Azathioprin, Mycophenolatmofetil, Cyclophosphamid und Antimalariamitteln sollte bei Patienten mit mäßiger und schwerer Niereninsuffizienz reduziert werden. Leflunomid und zahlreiche Biologika (Ausnahme Biologika mit einer Molekülmasse < 60 kDa) können aus pharmakokinetischen Überlegungen ohne Dosismodifikation auch bei Niereninsuffizienz eingesetzt werden. Insbesondere die häufigen Komorbiditäten sowie das erhöhte Infektionsrisiko sind bei Patienten mit Niereninsuffizienz unter einer Therapie mit Immunsuppressiva zu berücksichtigen.

Schlussfolgerung

Weitere Studien sind erforderlich, um die Evidenzlage hinsichtlich einer Therapie mit Immunsuppressiva und Biologika bei Patienten mit entzündlich-rheumatischen Erkrankungen und Niereninsuffizienz zu verbessern.

Abstract

Background

Patients with inflammatory rheumatic diseases frequently have a reduced renal function. The risk of adverse events is increased in these patients and treatment options in patients with rheumatic disease and renal failure are poorly studied.

Methods

A selective literature search was carried out for pharmocokinetics, dosage and toxicity of antirheumatic drugs in patients with renal insufficiency.

Results

The use of nonsteroidal anti-inflammatory drugs (NSAID), cyclooxygenase(COX)-2 inhibitors, gold and cyclosporine is limited in renal insufficiency due to nephrotoxicity. Methotrexate should not be used in patients with a glomerular filtration rate (eGFR) < 45 ml/min, because of the unpredictable pharmacokinetics with a risk for fatal pancytopenia. The dosage of sulfasalazine, azathioprine, mycophenolate mofetil, cyclophosphamide and antimalarial drugs should be reduced in patients with moderate and severe renal insufficiency. In contrast, leflunomide and numerous biologics can be used without dosage modification; however, biologics with a molecular weight < 60 kDa (e.g. anakinra) are an exception and should be reduced in patients with renal insufficiency. Overall, there are only limited data on the use of biologics in this population. Numerous comorbidities and the high risk for infection should be kept in mind when patients with rheumatic disease and renal failure are treated with immunosuppressive drugs.

Conclusion

Further studies are necessary to obtain more evidence on the use of disease-modifying antirheumatic drugs (DMARD) and biologics in patients with renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Hill AJ, Thomson RJ, Hunter JA et al (2009) The prevalence of chronic kidney disease in rheumatology outpatients. Scott Med J 54:9–12

    Article  CAS  PubMed  Google Scholar 

  2. Karie S, Gandjbakhch F, Janus N et al (2008) Kidney disease in RA patients: prevalence and implication on RA-related drugs management: the MATRIX study. Rheumatology (Oxford) 47:350–354

  3. Taber SS, Pasko DA (2008) The epidemiology of drug-induced disorders: the kidney. Expert Opin Drug Saf 7:679–690

    Article  CAS  PubMed  Google Scholar 

  4. Lapi F, Azoulay L, Yin H et al (2013) Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case control study. BMJ 346:e8525

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kristensen SL, Fosbøl EL, Kamper AL et al (2012) Use of nonsteroidal anti-inflammatory drugs prior to chronic renal replacement therapy initiation: a nationwide study. Pharmacoepidemiol Drug Saf 21:428–434

    Article  PubMed  Google Scholar 

  6. Loewen PS (2002) Review of the selective COX-2 inhibitors celecoxib and rofecoxib: focus on clinical aspects. CJEM 4:268–275

    PubMed  Google Scholar 

  7. Harris RC (2006) COX-2 and the kidney. J Cardiovasc Pharmacol 47(Suppl 1):S37–S42

    Article  CAS  PubMed  Google Scholar 

  8. Agrawal NG, Matthews CZ, Mazenko RS et al (2004) Pharmacokinetics of etoricoxib in patients with renal impairment. J Clin Pharmacol 44:48–58

    Article  CAS  PubMed  Google Scholar 

  9. Chiowchanwisawakit P, Srinonprasert V, Nilganuwong S et al (2012) Antimalarial-induced maculopathy: accuracy of Amsler grid as a diagnostic tool and risk factors. J Med Assoc Thai 95(Suppl 2):S218–S226

    PubMed  Google Scholar 

  10. Bressolle F, Bologna C, Kinowski JM et al (1998) Effects of moderate renal insufficiency on pharmacokinetics of methotrexate in rheumatoid arthritis patients. Ann Rheum Dis 57:110–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Beaman JM, Hackett LP, Luxton G et al (2002) Effect of hemodialysis on leflunomide plasma concentrations. Ann Pharmacother 36:75–77

    Article  PubMed  Google Scholar 

  12. Bergner R, Peters L, Schmitt V et al (2013) Leflunomide in dialysis patients with rheumatoid arthritis – a pharmacokinetic study. Clin Rheumatol 32:267–270

    Article  PubMed  Google Scholar 

  13. Russo PA, Wiese MD, Smith MD et al (2013) Leflunomide for inflammatory arthritis in end-stage renal disease on peritoneal dialysis: a pharmacokinetic and pharmacogenetic study. Ann Pharmacother 47:e15

    Article  PubMed  Google Scholar 

  14. Inami Y, Yamaji K, Sato M et al (2013) Effects of dialysis on the pharmacokinetics of salazosulfapyridine. Rheumatol Int 33:535–539

    Article  CAS  PubMed  Google Scholar 

  15. Akiyama Y, Sakurai Y, Kato Y et al (2014) Retrospective study of salazosulfapyridine in eight patients with rheumatoid arthritis on hemodialysis. Mod Rheumatol 24:285–290

    Article  CAS  PubMed  Google Scholar 

  16. Schusziarra V, Ziekursch V, Schlamp R et al (1976) Pharmacokinetics of azathioprine under haemodialysis. Int J Clin Pharmacol Biopharm 14:298–302

    CAS  PubMed  Google Scholar 

  17. Hest RM van, Gelder T van, Vulto AG et al (2009) Pharmacokinetic modelling of the plasma protein binding of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet 48:463–476

    Article  PubMed  Google Scholar 

  18. Mohammadpur AH, Nazemian F, Abtahi B et al (2008) Influence of renal graft function on mycophenolic acid pharmacokinetics during the early period after kidney transplant. Exp Clin Transplant 6:276–281

    PubMed  Google Scholar 

  19. Winter BC de, Gelder T van, Mathot RA et al (2009) Limited sampling strategies drawn within 3 hours postdose poorly predict mycophenolic acid area-under-the-curve after enteric-coated mycophenolate sodium. Ther Drug Monit 31:585–591

    Article  PubMed  Google Scholar 

  20. Haubitz M, Groot K de (2008) Tolerance of mycophenolate mofetil in end-stage renal disease patients with ANCA-associated vasculitis. Clin Nephrol 57:421–424

    Article  Google Scholar 

  21. Haubitz M, Bohnenstengel F, Brunkhorst R et al (2002) Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int 61:1495–1501

    Article  CAS  PubMed  Google Scholar 

  22. Meibohm B, Zhou H (2012) Renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol 52:54S–62S

    Article  PubMed  Google Scholar 

  23. Kim DC, Reitz B, Carmichael DF et al (1995) Kidney as a major clearance organ for recombinant human interleukin-1 receptor antagonist. J Pharm Sci 84:575–580

    Article  CAS  PubMed  Google Scholar 

  24. Yang BB, Baughman S, Sullivan JT (2003) Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther 74:85–94

    Article  CAS  PubMed  Google Scholar 

  25. Stankovic Stojanovic K, Delmas Y, Torres PU et al (2012) Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant 27:1898–1901

    Article  Google Scholar 

  26. Don BR, Spin G, Nestorov I et al (2005) The pharmacokinetics of etanercept in patients with end-stage renal disease on haemodialysis. J Pharm Pharmacol 57:1407–1413

    Article  CAS  PubMed  Google Scholar 

  27. Senel S, Kisacik B, Ugan Y et al (2011) The efficacy and safety of etanercept in patients with rheumatoid arthritis and spondyloarthropathy on hemodialysis. Clin Rheumatol 30:1369–1372

    Article  PubMed  Google Scholar 

  28. Singh R, Cuchacovich R, Huang W, Espinoza LR et al (2002) Infliximab treatment in a patient with rheumatoid arthritis on hemodialysis. J Rheumatol 29:636–637

    PubMed  Google Scholar 

  29. Hammoudeh M (2006) Infliximab treatment in a patient with rheumatoid arthritis on haemodialysis. Rheumatology (Oxford) 45:357–359

  30. Marocchi E, Spadaro A, Giannakakis K et al (2010) Infliximab in a patient with ankylosing spondylitis and secondary IgA nephropathy requiring haemodialysis. Clin Exp Rheumatol 28:440

    PubMed  Google Scholar 

  31. Saougou I, Papagoras C, Markatseli TE et al (2010) A case report of a psoriatic arthritis patient on hemodialysis treated with tumor necrosis factor blocking agent and a literature review. Clin Rheumatol 29:1455–1459

    Article  PubMed  Google Scholar 

  32. Kume K, Yamasaki M, Yoshikawa I et al (2011) Infliximab treatment in a patient with Crohn’s disease on haemodialysis. Colorectal Dis 13:341

    Article  CAS  PubMed  Google Scholar 

  33. Chiba M, Tsuda S, Tsuji T et al (2014) Crohn’s disease successfully treated with infliximab in a patient receiving hemodialysis: case report and review of the literature. Medicine (Baltimore) 93:e54

  34. Kleinert J, Lorenz M, Köstler W et al (2004) Refractory Wegener’s granulomatosis responds to tumor necrosis factor blockade. Wien Klin Wochenschr 116:334–338

    Article  PubMed  Google Scholar 

  35. Yee AM, Pochapin MB (2001) Treatment of complicated sarcoidosis with infliximab anti-tumor necrosis factor-alpha therapy. Ann Intern Med 135:27–31

    Article  CAS  PubMed  Google Scholar 

  36. Sumida K, Ubara Y, Suwabe T (2013) Adalimumab treatment in patients with rheumatoid arthritis with renal insufficiency. Arthritis Care Res (Hoboken) 65:471–475

    Article  Google Scholar 

  37. Laurino S, Chaudhry A, Booth A et al (2010) Prospective study of TNFalpha blockade with adalimumab in ANCA-associated systemic vasculitis with renal involvement. Nephrol Dial Transplant 25:3307–3314

    Article  CAS  PubMed  Google Scholar 

  38. Jillella AP, Dainer PM, Kallab AM et al (2002) Treatment of a patient with end-stage renal disease with Rituximab: pharmacokinetic evaluation suggests Rituximab is not eliminated by hemodialysis. Am J Hematol 71:219–222

    Article  PubMed  Google Scholar 

  39. Nadri QJ (2009) Rituximab to treat active SLE in a hemodialysis patient. Saudi J Kidney Dis Transpl 20:1085–1086

    PubMed  Google Scholar 

  40. Condon MB, Ashby D, Pepper RJ et al (2013) Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 72:1280–1286

    Article  CAS  PubMed  Google Scholar 

  41. Iwamoto M, Honma S, Asano Y et al (2011) Effective and safe administration of tocilizumab to a patient with rheumatoid arthritis on haemodialysis. Rheumatol Int 31:559–560

    Article  PubMed  Google Scholar 

  42. Cañas-Ventura A, Rodríguez E, Andreu M et al (2013) Tocilizumab in amyloidosis-associated kidney disease secondary to inflammatory bowel diseases. Dig Dis Sci 58:2736–2737

    Article  PubMed  Google Scholar 

  43. Okuda Y, Ohnishi M, Matoba K et al (2014) Comparison of the clinical utility of tocilizumab and anti-TNF therapy in AA amyloidosis complicating rheumatic diseases. Mod Rheumatol 24:137–143

    Article  CAS  PubMed  Google Scholar 

  44. Mori S, Yoshitama T, Hidaka T et al (2015) Effectiveness and safety of tocilizumab therapy for patients with rheumatoid arthritis and renal insufficiency: a real-life registry study in Japan (the ACTRA-RI study). Ann Rheum Dis (Epub ahead of print). doi:10.1136/annrheumdis-2014-206695

  45. Bannwarth B, Kostine M, Poursac N (2013) A pharmacokinetic and clinical assessment of tofacitinib for the treatment of rheumatoid arthritis. Expert Opin Drug Metab Toxicol 9:753–761

    Article  CAS  PubMed  Google Scholar 

  46. Krishnaswami S, Chow V, Boy M et al (2014) Pharmacokinetics of tofacitinib, a Janus kinase inhibitor, in patients with impaired renal function and end-stage renal disease. J Clin Pharmacol 54:46–52

    Article  CAS  PubMed  Google Scholar 

  47. Schipper LG, Fleuren HW, Bergh JP van den et al (2015) Treatment of osteoporosis in renal insufficiency. Clin Rheumatol (Epub ahead of print)

  48. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 113:S1–S130

    Google Scholar 

  49. Boonen S, Sellmeyer DE, Lippuner K et al (2008) Renal safety of annual zoledronic acid infusions in osteoporotic postmenopausal women. Kidney Int 74:641–648

    Article  CAS  PubMed  Google Scholar 

  50. Bergner R, Henrich D, Hoffmann M et al (2008) Treatment of reduced bone density with ibandronate in dialysis patients. J Nephrol 21:510–516

    CAS  PubMed  Google Scholar 

  51. Meys E, Devogelaer JP, Geubel A et al (1992) Fever, hepatitis and acute interstitial nephritis in a patient with rheumatoid arthritis. Concurrent manifestations of azathioprine hypersensitivity. J Rheumatol 19:807–809

    CAS  PubMed  Google Scholar 

  52. Bir K, Herzenberg AM, Carette S (2006) Azathioprine induced acute interstitial nephritis as the cause of rapidly progressive renal failure in a patient with Wegener’s granulomatosis. J Rheumatol 33:185–187

    PubMed  Google Scholar 

  53. Karstila KL, Rantalaiho VM, Mustonen JT et al (2010) Renal safety of initial combination versus single DMARD therapy in patients with early rheumatoid arthritis: an 11-year experience from the FIN-RACo Trial. Clin Exp Rheumatol 28:73–78

    CAS  PubMed  Google Scholar 

  54. Patel H, Barr A, Jeejeebhoy KN (2009) Renal effects of long-term treatment with 5-aminosalicylic acid. Can J Gastroenterol 23:170–176

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Gremese E, Ferraccioli GF (2004) Benefit/risk of cyclosporine in rheumatoid arthritis. Clin Exp Rheumatol 22(Suppl 35):S101–S107

    CAS  PubMed  Google Scholar 

  56. Swarup A, Sachdeva N, Schumacher HR (2004) Dosing of antirheumatic drugs in renal disease and dialysis. J Clin Rheumatol 10:190–204

    Article  PubMed  Google Scholar 

  57. Saint Marcoux B, De Bandt M, CRI (Club Rhumatismes et Inflammation) (2006) Vasculitides induced by TNFalpha antagonists: a study in 39 patients in France. Joint Bone Spine 73:710–713

    Article  Google Scholar 

  58. Kaneko K, Nanki T, Hosoya T et al (2010) Etanercept-induced necrotizing crescentic glomerulonephritis in two patients with rheumatoid arthritis. Mod Rheumatol 20:632–636

    Article  PubMed  Google Scholar 

  59. Sacquépée M, Rouleau V, Cantin JF et al (2010) Active WHO class IV lupus nephritis in a patient treated with etanercept for a psoriasic arthritis. Nephrol Ther 6:537–540

    Article  PubMed  Google Scholar 

  60. Michel M, Henri P, Vincent FB et al (2013) Mesangial immunoglobulin (Ig)A glomerulonephritis in a patient with rheumatoid arthritis treated with abatacept. Joint Bone Spine 80:660–663

    Article  PubMed  Google Scholar 

  61. Hirschberg R (2012) Renal complications from bisphosphonate treatment. Curr Opin Support Palliat Care 6:342–347

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S.M. Weiner hat im Rahmen von Vorträgen Honorare der Firmen Abbott, BMS, MSD, Pfizer und Roche erhalten; R. Bergner hat im Rahmen von Vorträgen Honorare der Firmen Abbott, BMS, MSD, Pfizer und Roche erhalten.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M. Weiner.

Additional information

Die Angaben wurden von den Autoren mit größter möglicher Sorgfalt zusammengetragen. Dies ersetzt im Einzelfall jedoch nicht die Fachinformation des Herstellers. Bei widersprüchlichen Angaben sind stets die Angaben in der Fachinformation maßgeblich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, S., Bergner, R. Dosierung und Toxizität von Antirheumatika bei Niereninsuffizienz. Z Rheumatol 74, 300–309 (2015). https://doi.org/10.1007/s00393-014-1480-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1480-2

Schlüsselwörter

Keywords

Navigation