Skip to main content

Advertisement

Log in

Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Submucosal collagen is paramount for colonic anastomotic integrity. Matrix metalloproteinases (MMPs) mediate collagen degradation that increases the risk of wound dehiscence. Although broad-spectrum MMP inhibitors are beneficial for anastomotic strength, they can cause adverse reactions. Knowledge of specific MMPs responsible for the weakening of anastomoses can be used to optimise MMP inhibition therapy. We aimed to quantify transcript and protein levels of multiple MMPs in colonic anastomoses and evaluate the effect of inhibiting the MMPs that displayed the highest expression levels on anastomotic repair.

Methods

Left-sided colonic anastomoses were made in male Sprague-Dawley rats. After 3 days when biomechanical strength is lowest, MMP mRNA and protein levels were measured by quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays and gelatin zymography. The effects of the MMP-8, MMP-9 and MMP-12 synthetic inhibitor AZD3342 was also studied.

Results

MMP-8, MMP-9 and MMP-12 gene and protein expression increased profoundly (p < 0.01), and MMP-13 mRNA and MMP-2 mRNA and protein modestly (p < 0.001) in the anastomoses. MMP-3 mRNA levels were not up-regulated significantly compared with adjacent uninjured colon. Increased anastomotic MMP-12 levels paralleled macrophage infiltration by immunohistochemical analyses. AZD3342 (50 mg/kg) treatment increased the anastomotic breaking strength by 29 % (p = 0.015) day 3 compared with vehicle. Improved anastomotic strength was not accompanied with alterations of type I or type III procollagen mRNA but was possibly due to inhibition of the concerted digestive action on the existent submucosal collagens by the targeted MMPs.

Conclusion

The present findings justify the concept of selective MMP inhibition to enhance anastomotic strength in colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan AA, Wheeler JM, Cunningham C, George B, Kettlewell M, Mortensen NJ (2008) The management and outcome of anastomotic leaks in colorectal surgery. Colorectal Dis 10:587–592

    Article  PubMed  CAS  Google Scholar 

  2. Kube R, Mroczkowski P, Granowski D, Benedix F, Sahm M, Schmidt U et al (2010) Anastomotic leakage after colon cancer surgery: a predictor of significant morbidity and hospital mortality, and diminished tumour-free survival. Eur J Surg Oncol 36:120–124

    Article  PubMed  CAS  Google Scholar 

  3. Morrison CJ, Butler GS, Rodriguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21:645–653

    Article  PubMed  CAS  Google Scholar 

  4. Halsted WS (1887) Circular suture of the intestine—an experimental study. Am J Med Sci 188:436–460

    Article  Google Scholar 

  5. Syk I, Ågren MS, Adawi D, Jeppsson B (2001) Inhibition of matrix metalloproteinases enhances breaking strength of colonic anastomoses in an experimental model. Br J Surg 88:228–234

    Article  PubMed  CAS  Google Scholar 

  6. de Hingh IH, Siemonsma MA, de Man BM, Lomme RM, Hendriks T (2002) The matrix metalloproteinase inhibitor BB-94 improves the strength of intestinal anastomoses in the rat. Int J Colorectal Dis 17:348–354

    Article  PubMed  Google Scholar 

  7. Ågren MS, Andersen L, Heegaard AM, Jorgensen LN (2008) Effect of parenteral zinc sulfate on colon anastomosis repair in the rat. Int J Colorectal Dis 23:857–861

    Article  PubMed  Google Scholar 

  8. van der Stappen JW, Hendriks T, de Boer HH, de Man BM, de Pont JJ (1992) Collagenolytic activity in experimental intestinal anastomoses. Differences between small and large bowel and evidence for the presence of collagenase. Int J Colorectal Dis 7:95–101

    Article  PubMed  Google Scholar 

  9. Seifert WF, Wobbes T, Hendriks T (1996) Divergent patterns of matrix metalloproteinase activity during wound healing in ileum and colon of rats. Gut 39:114–119

    Article  PubMed  CAS  Google Scholar 

  10. Savage FJ, Lacombe DL, Boulos PB, Hembry RM (1997) Role of matrix metalloproteinases in healing of colonic anastomosis. Dis Colon Rectum 40:962–970

    Article  PubMed  CAS  Google Scholar 

  11. Ågren MS, Andersen TL, Mirastschijski U, Syk I, Schiødt CB, Surve V et al (2006) Action of matrix metalloproteinases at restricted sites in colon anastomosis repair: an immunohistochemical and biochemical study. Surgery 140:72–82

    Article  PubMed  Google Scholar 

  12. Stumpf M, Klinge U, Wilms A, Zabrocki R, Rosch R, Junge K et al (2005) Changes of the extracellular matrix as a risk factor for anastomotic leakage after large bowel surgery. Surgery 137:229–234

    Article  PubMed  Google Scholar 

  13. Pasternak B, Matthiessen P, Jansson K, Andersson M, Aspenberg P (2010) Elevated intraperitoneal matrix metalloproteinases-8 and -9 in patients who develop anastomotic leakage after rectal cancer surgery: a pilot study. Colorectal Dis 12:e93–e98

    PubMed  CAS  Google Scholar 

  14. Kiyama T, Onda M, Tokunaga A, Efron DT, Barbul A (2001) Effect of matrix metalloproteinase inhibition on colonic anastomotic healing in rats. J Gastrointest Surg 5:303–311

    Article  PubMed  CAS  Google Scholar 

  15. Ågren MS, Andersen TL, Andersen L, Schiødt CB, Surve V, Andreassen TT et al (2011) Nonselective matrix metalloproteinase but not tumor necrosis factor-alpha inhibition effectively preserves the early critical colon anastomotic integrity. Int J Colorectal Dis 26:329–337

    Article  PubMed  Google Scholar 

  16. Renkiewicz R, Qiu L, Lesch C, Sun X, Devalaraja R, Cody T et al (2003) Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum 48:1742–1749

    Article  PubMed  CAS  Google Scholar 

  17. Björnsson MJ, Havemose-Poulsen A, Stoltze K, Holmstrup P (2004) Influence of the matrix metalloproteinase inhibitor batimastat (BB-94) on periodontal bone destruction in Sprague–Dawley rats. J Periodontal Res 39:269–274

    Article  PubMed  Google Scholar 

  18. Hutchinson JW, Tierney GM, Parsons SL, Davis TR (1998) Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br 80:907–908

    Article  PubMed  CAS  Google Scholar 

  19. Drummond AH, Beckett P, Brown PD, Bone EA, Davidson AH, Galloway WA et al (1999) Preclinical and clinical studies of MMP inhibitors in cancer. Ann N Y Acad Sci 878:228–235

    Article  PubMed  CAS  Google Scholar 

  20. Vaalamo M, Karjalainen-Lindsberg ML, Puolakkainen P, Kere J, Saarialho-Kere U (1998) Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations. Am J Pathol 152:1005–1014

    PubMed  CAS  Google Scholar 

  21. Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242:201–210

    Article  PubMed  CAS  Google Scholar 

  22. Gawronska-Kozak B (2011) Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol 30:290–300

    Article  PubMed  CAS  Google Scholar 

  23. Shapiro SD, Kobayashi DK, Pentland AP, Welgus HG (1993) Induction of macrophage metalloproteinases by extracellular matrix. Evidence for enzyme- and substrate-specific responses involving prostaglandin-dependent mechanisms. J Biol Chem 268:8170–8175

    PubMed  CAS  Google Scholar 

  24. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A 93:3942–3946

    Article  PubMed  CAS  Google Scholar 

  25. Taddese S, Jung MC, Ihling C, Heinz A, Neubert RH, Schmelzer CE (2010) MMP-12 catalytic domain recognizes and cleaves at multiple sites in human skin collagen type I and type III. Biochim Biophys Acta 1804:731–739

    Article  PubMed  CAS  Google Scholar 

  26. Danielsen PL, Holst AV, Maltesen HR, Bassi MR, Holst PJ, Heinemeier KM et al (2011) Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery 150:897–906

    Article  PubMed  Google Scholar 

  27. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  28. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114, 116, 118–119

    PubMed  CAS  Google Scholar 

  29. Mirastschijski U, Impola U, Karsdal MA, Saarialho-Kere U, Ågren MS (2002) Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo. J Invest Dermatol 118:55–64

    Article  PubMed  CAS  Google Scholar 

  30. Hu X, Beeton C (2010) Detection of functional matrix metalloproteinases by zymography. J Vis Exp doi: 10.3791/2445

  31. Carter CA, Misra M (2010) Effects of short-term cigarette smoke exposure on Fischer 344 rats and on selected lung proteins. Toxicol Pathol 38:402–415

    Article  PubMed  CAS  Google Scholar 

  32. Peeters-Joris C, Hammani K, Singer CF (1998) Differential regulation of MMP-13 (collagenase-3) and MMP-3 (stromelysin-1) in mouse calvariae. Biochim Biophys Acta 1405:14–28

    Article  PubMed  CAS  Google Scholar 

  33. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  PubMed  CAS  Google Scholar 

  34. Mirastschijski U, Haaksma CJ, Tomasek JJ, Ågren MS (2004) Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 299:465–475

    Article  PubMed  CAS  Google Scholar 

  35. Verhofstad MH, Lange WP, van der Laak JA, Verhofstad AA, Hendriks T (2001) Microscopic analysis of anastomotic healing in the intestine of normal and diabetic rats. Dis Colon Rectum 44:423–431

    Article  PubMed  CAS  Google Scholar 

  36. Varani J, Perone P, Fligiel SE, Fisher GJ, Voorhees JJ (2002) Inhibition of type I procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis. J Invest Dermatol 119:122–129

    Article  PubMed  CAS  Google Scholar 

  37. Bannikov GA, Karelina TV, Collier IE, Marmer BL, Goldberg GI (2002) Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277:16022–16027

    Article  PubMed  CAS  Google Scholar 

  38. Mäkitalo L, Kolho KL, Karikoski R, Anthoni H, Saarialho-Kere U (2010) Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scand J Gastroenterol 45:862–871

    Article  PubMed  Google Scholar 

  39. Wright RW, Allen T, El-Zawawy HB, Brodt MD, Silva MJ, Gill CS et al (2006) Medial collateral ligament healing in macrophage metalloelastase (MMP-12)-deficient mice. J Orthop Res 24:2106–2113

    Article  PubMed  CAS  Google Scholar 

  40. Houghton AM, Hartzell WO, Robbins CS, Gomis-Ruth FX, Shapiro SD (2009) Macrophage elastase kills bacteria within murine macrophages. Nature 460:637–641

    PubMed  CAS  Google Scholar 

  41. Witte MB, Thornton FJ, Kiyama T, Efron DT, Schulz GS, Moldawer LL et al (1998) Metalloproteinase inhibitors and wound healing: a novel enhancer of wound strength. Surgery 124:464–470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Schjerling for his advice on the mRNA measurements and Karen Bonde Larsen for help with microphotography. All materials and utilities were funded by the I.M. Dæhnfeldt Foundation, The A.P. Møller Foundation, The Danish Medical Association and AstraZeneca, Sweden. The authors have no disclosers to declare, except M. B. H. who is currently employed by AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter-Martin Krarup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krarup, PM., Eld, M., Heinemeier, K. et al. Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair. Int J Colorectal Dis 28, 1151–1159 (2013). https://doi.org/10.1007/s00384-013-1697-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-013-1697-6

Keywords

Navigation