Skip to main content
Log in

Proliferative Vitreoretinopathie-Prozess – „To heal or not to heal“

Proliferative vitreoretinopathy process—To heal or not to heal

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die proliferative Vitreoretinopathie (PVR) ist nach einem halben Jahrhundert Forschungstätigkeit weiterhin ein ungelöstes Problem.

Methoden

Es folgt ein Übersichtsbeitrag zu den Mechanismen der PVR im Kontext der „Wundheilungsforschung“.

Ergebnisse

Wundheilung ist ein physiologischer Reparaturmechanismus, der in allen Organen in ähnlicher Weise stattfindet und narbige Veränderungen hinterlassen kann. Die PVR basiert auf diesem Mechanismus. Die Besonderheit dieses Prozesses und seiner Folgen ergibt sich durch die Lokalisation und die beteiligten Strukturen. Die bisherigen medikamentösen Ansätze waren nicht ausreichend wirksam. Das wachsende Verständnis um die Mechanismen der narbenfreien fetalen Wundheilung könnte aber zur Lösung des PVR-Problems führen.

Schlussfolgerung

Die PVR ist ein physiologischer Prozess mit pathologischem Ergebnis. Die komplexen Schritte, die sukzessive ihren Beitrag zum Wundheilungsprozess leisten, sind gut verstanden. Eine Modifikation dieser Schritte, um den ursprünglichen Zustand wieder herzustellen, ist gegenwärtig weder in der Augenheilkunde noch in anderen medizinischen Fächern gelungen, aber möglich.

Abstract

Background

Proliferative vitreoretinopathy (PVR) is still an unsolved problem after half a century of research.

Methods

This article provides a review of mechanisms leading to PVR in the context of wound healing research.

Results

Wound healing is a physiological repair process that occurs in a similar way in all organs and may end in scar formation. The development of PVR is based on this wound healing mechanism. The localization and structures involved lead to specific characteristics and consequences. Up to now the pharmacotherapeutic strategies were not sufficiently effective. The growing understanding of the mechanisms of scar-free fetal wound healing, could however lead to a solution of the PVR problem.

Conclusion

The PVR is a physiological process with a pathological result. The complex steps involved in vitreoretinal wound healing are well understood. There is currently no therapeutic approach neither in ophthalmology nor in other medical disciplines that is able to restore the original function and structure of the involved tissue or organ but there is hope that this can succeed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Machemer R, Aaberg TM, Freeman HM et al (1991) An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 112:159–165

    Article  CAS  PubMed  Google Scholar 

  2. de la Rua ER, Pastor JC, Fernandez I et al (2008) Non-complicated retinal detachment management: variations in 4 years. Retina 1 project; report 1. Br J Ophthalmol 92:523–525

    Article  PubMed  Google Scholar 

  3. Girard P, Mimoun G, Karpouzas I et al (1994) Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 14:417–424

    Article  CAS  PubMed  Google Scholar 

  4. Duquesne N, Bonnet M, Adeleine P (1996) Preoperative vitreous hemorrhage associated with rhegmatogenous retinal detachment: a risk factor for postoperative proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol 234:677–682

    Article  CAS  PubMed  Google Scholar 

  5. Yanyali A, Bonnet M (1996) Risk factors of postoperative proliferative vitreoretinopathy in giant tears. J Fr Ophtalmol 19:175–180

    CAS  PubMed  Google Scholar 

  6. Patel NN, Bunce C, Asaria RH, Charteris DG (2004) Resources involved in managing retinal detachment complicated by proliferative vitreoretinopathy. Retina 24:883

    Article  PubMed  Google Scholar 

  7. Kim IK, Arroyo JG (2002) Mechanisms in proliferative vitreoretinopathy. Ophthalmol Clin North Am 15:81–86

    Article  PubMed  Google Scholar 

  8. Tseng W, Cortez RT, Ramirez G et al (2004) Prevalence and risk factors for proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no previous vitreoretinal surgery. Am J Ophthalmol 137:1105–1115

    Article  PubMed  Google Scholar 

  9. Campochiaro PA, Kaden IH, Vidaurri-Leal J et al (1985) Cryotherapy enhances intravitreal dispersion of viable retinal pigment epithelial cells. Arch Ophthalmol 103:434–436

    Article  CAS  PubMed  Google Scholar 

  10. Bonnet M, Guenoun S (1995) Surgical risk factors for severe postoperative proliferative vitreoretinopathy (PVR) in retinal detachment with grade B PVR. Graefes Arch Clin Exp Ophthalmol 233:789–791

    Article  CAS  PubMed  Google Scholar 

  11. Bonnet M, Fleury J, Guenoun S et al (1996) Cryopexy in primary rhegmatogenous retinal detachment: a risk factor for postoperative proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol 234:739–743

    Article  CAS  PubMed  Google Scholar 

  12. Sanabria Ruiz-Colmenares MR, Pastor Jimeno JC, Garrote Adrados JA et al (2006) Cytokine gene polymorphisms in retinal detachment patients with and without proliferative vitreoretinopathy: a preliminary study. Acta Ophthalmol Scand 84:309–313

    Article  PubMed  CAS  Google Scholar 

  13. Rojas J, Fernandez I, Pastor JC et al (2010) A strong genetic association between the tumor necrosis factor locus and proliferative vitreoretinopathy: The Retina 4 Project. Ophthalmology 117:2417–2423

    Article  PubMed  Google Scholar 

  14. Rojas J, Fernandez I, Pastor JC et al (2013) A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 54:1665–1678

    Article  CAS  PubMed  Google Scholar 

  15. Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J et al (2013) The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: the Retina 4 Project. Ophthalmology 120:623–628

    Article  PubMed  Google Scholar 

  16. Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J et al (2013) The T309G MDM2 gene polymorphism is a novel risk factor for proliferative Vitreoretinopathy. PLoS One 12:e82283

    Article  CAS  Google Scholar 

  17. Anonymous (1983) The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90:121–125

    Article  Google Scholar 

  18. Heimann K, Wiedemann P (1989) Cologne classification of proliferative vitreoretinopathy. In: Heimann K, Wiedemann P (Hrsg) Proliferative Vitreoretinopathy. Kaden, Heidelberg, S 148–149

    Google Scholar 

  19. Lean SW, Stern WH, Irvine AR et al (1989) Classification of proliferative vitrereotinopathy used in the silicone study. Ophthalmology 96:765–771

    Article  CAS  PubMed  Google Scholar 

  20. Di Lauro S, Kadhim MR, Charteris DG, Pastor JC (2016) Classifications for proliferative vitreoretinopathy (PVR): an analysis of their use in publications over the last 15 years. J Ophthalmol 2016:7807596

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilkins RB, Kulwin DR (1979) Wendell L. Hughes lecture: wound healing. Ophthalmology 86:507–510

    Article  CAS  PubMed  Google Scholar 

  22. Mietz H, Heimann K (1995) Onset and recurrence of proliferative vitreoretinopathy in various vitreoretinal disease. Br J Ophthalmol 79:874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wiedemann P (1992) Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol 36:373–384

    Article  CAS  PubMed  Google Scholar 

  24. Moysidis SN, Thanos A, Vavvas DG (2012) Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm 2012:815937

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abu El-Asrar AM, Struyf S, Van Damme J et al (2008) Circulating fibrocytes contribute to the myofibroblast population in proliferative vitreoretinopathy epiretinal membranes. Br J Ophthalmol 92:699–704

    Article  CAS  PubMed  Google Scholar 

  26. Lin ML, Li YP, Li ZR et al (2011) Macrophages acquire fibroblast characteristics in a rat model of proliferative vitreoretinopathy. Ophthalmic Res 45:180–190

    Article  CAS  PubMed  Google Scholar 

  27. Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228

    Article  CAS  PubMed  Google Scholar 

  28. Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 69:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ioachim E, Stefaniotou M, Gorezis S et al (2005) Immunohistochemical study of extracellular matrix components in epiretinal membranes of vitreoproliferative retinopathy and proliferative diabetic retinopathy. Eur J Ophthalmol 15:384–391

    Article  CAS  PubMed  Google Scholar 

  30. Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405

    CAS  PubMed  Google Scholar 

  31. Guidry C (2005) The role of Müller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24:75–86

    Article  CAS  PubMed  Google Scholar 

  32. Sramek SJ, Wallow IH, Stevens TS et al (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841

    Article  CAS  PubMed  Google Scholar 

  33. McGillem GS, Dacheux RF (1999) Rabbit retinal Müller cells undergo antigenic changes in response to experimentally induced proliferative vitreoretinopathy. Exp Eye Res 68:617–627

    Article  CAS  PubMed  Google Scholar 

  34. Garcia S, Lopez E, Lopez-Colome AM (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. J Cell Biochem 104:377–390

    Article  CAS  PubMed  Google Scholar 

  35. Tamiya S, Liu L, Kaplan HJ (2010) Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest Ophthalmol Vis Sci 51:2755–2763

    Article  PubMed  Google Scholar 

  36. Pratt CH, Vadigepalli R, Chakravarthula P et al (2008) Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium. Mol Vis 14:1414–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee H, O’Meara SJ, O’Brien C et al (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299

    Article  PubMed  Google Scholar 

  38. Willis BC, DuBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160

    Article  CAS  PubMed  Google Scholar 

  40. Raghu K, Eric GN (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  Google Scholar 

  41. Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82:175–181

    Article  PubMed  Google Scholar 

  42. Choi J, Park SY, Joo CK (2007) Transforming growth factor-beta 1 represses ecadherin production via slug expression in lens epithelial cells. Invest Ophthalmol Vis Sci 48:2708–2718

    Article  PubMed  Google Scholar 

  43. Beutel J, Luke M, Bartz-Schmidt KU et al (2009) Vitreal-induced RPE cell traction. Investigation of pathological vitreous samples in an in vitro contraction model. Ophthalmologe 106:893–898

    Article  CAS  PubMed  Google Scholar 

  44. Bringmann A, Wiedemann P (2009) Involvement of Muller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247:865–883

    Article  PubMed  Google Scholar 

  45. Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  46. Charteris DG, Downie J, Aylward GW et al (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245:93–100

    Article  PubMed  Google Scholar 

  47. Fisher SK, Lewis GP (2003) Muller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897

    Article  PubMed  Google Scholar 

  48. Baudouin C, Fredj-Reygrobellet D, Brignole F, Negre F, Lapalus P et al (1993) Growth factors in vitreous and subretinal fluid cells from patients with proliferative reoretinopathy. Ophthalmic Res 25:52–59

    Article  CAS  PubMed  Google Scholar 

  49. Kita T, Hata Y, Kano K et al (2007) Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 56:231–238

    Article  CAS  PubMed  Google Scholar 

  50. Winkler J, Hoerauf H (2011) TGF-β and RPE-derived cells in subretinal strands from patients with proliferative vitreoretinopathy. Eur J Ophthalmol 21:422–426

    Article  PubMed  Google Scholar 

  51. Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299

    Article  PubMed  Google Scholar 

  52. Lee J, Ko M, Joo CK (2008) Rho plays a key role in TGF-beta 1‑induced cytoskeletal rearrangement in human retinal pigment epithelium. J Cell Physiol 216:520–526

    Article  CAS  PubMed  Google Scholar 

  53. Oshima Y, Sakamoto T, Hisatomi T et al (2002) Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathy. Gene Ther 9:1214–1220

    Article  CAS  PubMed  Google Scholar 

  54. Itoh Y, Kimoto K, Imaizumi M et al (2007) Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 84:464–472

    Article  CAS  PubMed  Google Scholar 

  55. Kita T (2010) Molecular mechanisms of preretinal membrane contraction in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Nippon Ganka Gakkai Zasshi 114:927–934

    CAS  PubMed  Google Scholar 

  56. Nassar K, Grisanti S, Tura A et al (2014) A TGF‑β receptor 1 inhibitor for prevention of proliferative vitreoretinopathy. Exp Eye Res 123:72–78

    Article  CAS  PubMed  Google Scholar 

  57. Nassar K, Lüke J, Lüke M et al (2010) The novel use of decorin in prevention of the development of proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 249:1649–1660

    Article  Google Scholar 

  58. Abdullatif AM, Macky TA, Abdullatif MM (2018) Intravitreal decorin preventing proliferative vitreoretinopathy in perforating injuries: a pilot study. Graefes Arch Clin Exp Ophthalmol 256:2473–2481

    Article  CAS  PubMed  Google Scholar 

  59. Lei H, Hovland P, Velez G et al (2007) A potential role for PDGF‑C in experimental and clinical proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:2335–2342

    Article  PubMed  Google Scholar 

  60. Cui JZ, Chiu A, Maberley D et al (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye 21:200–208

    Article  CAS  PubMed  Google Scholar 

  61. Li R, Maminishkis A, Wang FE et al (2007) PDGF‑C and -D induced proliferation/migration of human RPE is abolished by inflammatory cytokines. Invest Ophthalmol Vis Sci 48:5722–5732

    Article  PubMed  Google Scholar 

  62. Moon SW, Chung EJ, Jung SA et al (2009) PDGF stimulation of Muller cell proliferation: contributions of c‑JNK and the PI3K/Akt pathway. Biochem Biophys Res Commun 388:167–171

    Article  CAS  PubMed  Google Scholar 

  63. Cui J, Lei H, Samad A et al (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88:438–444

    Article  CAS  PubMed  Google Scholar 

  64. Ikuno Y, Kazlauskas A (2002) An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor alpha receptor. Invest Ophthalmol Vis Sci 43:2406–2411

    PubMed  Google Scholar 

  65. Saishin Y, Takahashi K, Seo MS et al (2003) The kinase inhibitor PKC412 suppresses epiretinal membrane formation and retinal detachment in mice with proliferative retinopathies. Invest Ophthalmol Vis Sci 44:3656–3662

    Article  PubMed  Google Scholar 

  66. Kon CH, Occleston NL, Aylward GW et al (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712

    CAS  PubMed  Google Scholar 

  67. Hui Y, Shi Y, Zhang X et al (1999) TNF-alpha, IL‑8 and IL‑6 in the early inflammatory stage of experimental PVR model induced by macrophages. Zhonghua Yan Ke Za Zhi 35:140–143

    CAS  PubMed  Google Scholar 

  68. Wang LH, Li GL (2008) Progress in studies on effects of extracellular matrix in occurrence of proliferative vitreoretinopathy. Zhonghua Yan Ke Za Zhi 44:759–763

    CAS  PubMed  Google Scholar 

  69. Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  70. Hollborn M, Reichenbach A, Wiedemann P et al (2004) Contrary effects of cytokines on mRNAs of cell cycle- and ECM-related proteins in hRPE cells in vitro. Curr Eye Res 28:215–223

    Article  CAS  PubMed  Google Scholar 

  71. Hollborn M, Faude F, Wiedemann P et al (2003) Elevated proto-oncogene and collagen mRNA expression in PVR retinas. Graefes Arch Clin Exp Ophthalmol 241:439–446

    Article  CAS  PubMed  Google Scholar 

  72. Jerdan JA, Pepose JS, Michels RG et al (1989) Proliferativee vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810

    Article  CAS  PubMed  Google Scholar 

  73. George B, Chen S, Chaudhary V et al (2009) Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy. Curr Eye Res 34:134–144

    Article  CAS  PubMed  Google Scholar 

  74. Glaser BM, Cardin A, Biscoe B (1987) Proliferative vitreoretinopathy. The mechanism of development of vitreoretinal traction. Ophthalmology 94:327–332

    Article  CAS  PubMed  Google Scholar 

  75. Grisanti S, Wiedemann P, Weller M et al (1991) The significance of complement in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 32:2711–2717

    CAS  PubMed  Google Scholar 

  76. Yu J, Liu F, Cui SJ et al (2008) Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics 8:3667–3678

    Article  CAS  PubMed  Google Scholar 

  77. Coral K, Angayarkanni N, Madhavan J et al (2008) Lysyl oxidase activity in the ocular tissues and the role of LOX in proliferative diabetic retinopathy and rhegmatogenous retinal detachment. Invest Ophthalmol Vis Sci 49:4746–4752

    Article  PubMed  Google Scholar 

  78. Symeonidis C, Papakonstantinou E, Souliou E et al (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol 89:339–345

    Article  CAS  PubMed  Google Scholar 

  79. Shitama T, Hayashi H, Noge S et al (2008) Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin Appl 2:1265–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leung A, Crombleholme TM, Keswani SG (2012) Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr 24:371–378

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tsai HW, Wang PH, Tsui KH (2017) Mesenchymal stem cell in wound healing and regeneration. J Chin Med Assoc 17:30168–30165

    Google Scholar 

  83. Horng HC, Chang WH, Yeh CC et al (2017) Estrogen effects on wound healing. Int J Mol Sci 18:E2325

    Article  PubMed  CAS  Google Scholar 

  84. Yannas IV, Tzeranis DS, So PTC (2017) Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 25:177–191

    Article  PubMed  PubMed Central  Google Scholar 

  85. Carre AL, Larson BJ, Knowles JA, Kawai K, Longaker MT, Lorenz HP (2012) Fetal mouse skin heals scarlessly in a chick chorioallantoic membrane model system. Ann Plast Surg 69:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grisanti.

Ethics declarations

Interessenkonflikt

S. Grisanti, S. Priglinger und L. Hattenbach geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grisanti, S., Priglinger, S. & Hattenbach, L. Proliferative Vitreoretinopathie-Prozess – „To heal or not to heal“. Ophthalmologe 118, 10–17 (2021). https://doi.org/10.1007/s00347-020-01294-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01294-0

Schlüsselwörter

Keywords

Navigation