Skip to main content
Log in

Einfluss der kornealen Biomechanik auf die Myopieregression nach Laser-in-situ-Keratomileusis

Influence of corneal biomechanical properties on myopic regression after laser in situ keratomileusis

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Eine Laser-in-situ-Keratomileusis (LASIK) gilt als sicheres und anerkanntes Verfahren zur Korrektur von Kurzsichtigkeiten. Postoperative Ergebnisse zeigen jedoch bei einzelnen Patientengruppen Probleme in der Langzeitstabilität. Vermutet wird u. a., dass der präoperative Zustand der Hornhaut einen Einfluss auf postoperative Probleme haben könnte.

Methode

Die Studie schloss 46 Augen von 25 Patienten ein. Bei 15 Patienten (19 Augen) handelte es sich um LASIK-Patienten, die 3 Monate postoperativ ein Refraktionsdefizit von − 0,50 dpt oder mehr aufwiesen. Innerhalb dieser Gruppe entwickelten 11 Patienten (15 Augen) innerhalb der ersten 3 postoperativen Monate eine Regression (Regressionsgruppe). Der Rest der Gesamtgruppe zeigte dagegen keine Regression (Stabilitätsgruppe). Neben der Prüfung der Hornhautdicke wurden Refraktionsfehler, Visus und Augeninnendruck gemessen. Bestimmt wurden außerdem die korneale Hysterese und der korneale Resistenzfaktor.

Ergebnisse

Die mittlere präoperative Myopie lag in der Stabilitätsgruppe bei − 3,14± 1,41 dpt (SE) und in der Regressionsgruppe bei − 6,47± 1,40 dpt. Auch die postoperativen, sphärischen Äquivalente sind statistisch signifikant unterschiedlich. Im Gegensatz dazu zeigt die mittlere, präoperative Hornhautdicke in beiden Gruppen keinen Unterschied.

Schlussfolgerung

Das Ziel der Studie, einen möglichen kausalen Zusammenhang zwischen einer Myopieregression nach LASIK und den biomechanischen Eigenschaften der Hornhaut und der Hornhautdicke festzustellen, lässt sich nicht eindeutig ableiten. In der Regressionsgruppe blieb ein erwarteter Zusammenhang zwischen der präoperativen kornealen Hysterese sowie dem Resistenzfaktor und einer postoperativen Regression aus.

Abstract

Background

Laser in situ keratomileusis is a safe and accepted method for correcting myopia. The operational results in terms of accuracy as well as the subjective acceptance of patients for corrections to – 8 D are now considered to be promising (Seiler, Refraktive Chirurgie der Hornhaut, 2000); however, postoperative results show individual patient problems in long-term stability. It is believed that the preoperative condition of the cornea (e.g. thickness, biomechanical properties) could have an influence on postoperative problems such as myopic regression.

Method

This study included a total of 46 eyes from 25 patients. At 3 months postoperatively, 15 patients (19 eyes) showed a SEQ of − 0.50 D or more. Within this group, 11 patients (15 eyes) developed a regression (regression group) within the first 3 postoperative months. The remainder of the total group did not show any regression (stability group). The subjects of this study were on average 33 ± 8 years (stability group) and 31 ± 7 years old (regression group). The corneal thickness was tested and refractive error, visual acuity (BCVA/UCVA) and intraocular pressure was measured. In addition, the corneal hysteresis (CH) and corneal resistance factor (CRF) were determined.

Results

The mean preoperative spherical equivalent refraction was − 3.14 D ± 1.41 D (SE) in the stability group and − 6.47 D ± 1.40 D (p = 0.001)in the regression group. Also, the postoperative spherical equivalents were statistically significant different (p < 0.05). In contrast, the mean preoperative corneal thickness showed no differences in both groups (p = 0.96) (stability group 563 ± 36 µm and regression group 563 ± 28 µm).

Conclusions

The aim of the study to detect a possible causal relationship between myopia regression after LASIK and the biomechanical properties of the cornea and corneal thickness could not be clearly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Alio JL et al (2008) Ten-year follow-up of laser in situ keratomileusis for myopia of up to − 10 diopters. Am J Ophthalmol 145:46–54

    Article  PubMed  Google Scholar 

  2. Ambrosio R et al (2010) Corneal ectasia after lasik despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg 19:1–6

    Google Scholar 

  3. Arbelaez MC et al (2009) Central ablation depth and postoperative refraction in excimer laser myopic correction measured with ultrasound, Scheimpflug, and optical coherence pachymetry. J Refract Surg 25:699–708

    Article  PubMed  Google Scholar 

  4. Arbelaez MC et al (2009) Excimer laser correction of moderate to high astigmatism with a non-wavefront-guided aberration-free ablation profile: six-month results. J Cataract Refract Surg 35:1789–1798

    Article  PubMed  Google Scholar 

  5. Brown MC et al (2009) Satisfaction of 13,655 patients with laser vision correction at 1 month after surgery. J Refract Surg 25:642–646

    Google Scholar 

  6. Chen S, Hui-Jin et al (2010) Changes in ocular response analyzer parameters after LASIK. J Refract Surg 26(4):279–288

    Article  PubMed  CAS  Google Scholar 

  7. Chen MC (2008) Corneal biomechanical measurements before and after laser in situ keratomileusis. J Cataract Refract Surg 34:1886–1891

    Article  PubMed  Google Scholar 

  8. Chen S et al (2010) Changes in ocular response analyzer parameters after LASIK. J Refract Surg 26(4):279–288

    Article  PubMed  CAS  Google Scholar 

  9. De Medeiros FW et al (2010) Differences in the early biomechanical effects of hyperopic and myopic laser in situ keratomileusis. J Cataract Refract Surg 36:947–953

    Article  Google Scholar 

  10. Fry K, Hersh PS (2006) Influence of corneal biomechanics on PRK outcome. In: XXIV Congress of the ESCRS, 2006, London

  11. Hamilton RD et al (2008) Differences in the corneal biomechanical effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or femtosecond laser. J Cataract Refract Surg 34:2049–2056

    Article  PubMed  Google Scholar 

  12. Hager A et al (2007) Changes in corneal hysteresis after clear corneal cataract surgery. Am J Ophthalmol 144(3):341–346

    Article  PubMed  Google Scholar 

  13. Hager A, Wiegand W (2008) Methods of measuring intraocular pressure independently of central corneal thickness. Ophthalmologe 105:840–844

    Article  PubMed  CAS  Google Scholar 

  14. Ho T et al (2007) Central corneal thickness measurements using Orbscan II, Visante, ultrasound, and pentacam pachymetry after laser in situ keratomileusis for myopia. J Cataract Refract Surg 33:1177–1182

    Article  PubMed  Google Scholar 

  15. Kirwan C, O’Keefe M (2008) Measurement of intraocular pressure in LASIK and LASEK patients using the Reichert ocular response analyzer and Goldmann applanation tonometry. J Refract Surg 24:366–370

    PubMed  Google Scholar 

  16. Kohnen T (2006) Classification of excimer laser profiles. J Cataract Refract Surg 32:543–544

    Article  PubMed  Google Scholar 

  17. Kymionis GD et al (2007) Eleven-year follow-up of laser in situ keratomileusis. J Cataract Refract Surg 33:191–196

    Article  PubMed  Google Scholar 

  18. Lau W, David P (2011) A clinical description of ocular response analyzer measurements. Invest Ophthalmol Vis Sci 52:2911–2916

    Article  PubMed  Google Scholar 

  19. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31(1):156–162

    Article  PubMed  Google Scholar 

  20. Moreno-Montanes J et al (2008) Reproducibility and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric implications. Invest Ophthalmol Vis Sci 49:968–874

    Article  PubMed  Google Scholar 

  21. Ortiz D et al (2007) Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 33:1371–1375

    Article  PubMed  Google Scholar 

  22. Pepose JS et al (2007) Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic and noncontact tonometry. Am J Ophthalmol 143(1):39–47

    Article  PubMed  Google Scholar 

  23. Plakitsi A et al (2011) Corneal biomechanical properties measured with the ocular response analyser in a myopic population. Ophthalmic Physiol Opt 31(4):404–412

    Article  PubMed  Google Scholar 

  24. Qazi MA et al (2009) Postoperative changes in intraocular pressure and corneal biomechanical metrics LASER in situ keratomileusis versus laser-assisted subepithelial keratectomy. J Cataract Refract Surg 35:1774–1788

    Article  PubMed  Google Scholar 

  25. Radhakrishnan H et al (2012) Corneal biomechanical properties and their correlates with refractive error. Clin Exp Optom 95(1):12–18

    Article  PubMed  Google Scholar 

  26. Rosman M et al (2010) Refractive stability of LASIK with the VISX 20/0 excimer laser vs ZB5 M Phakic IOL implantation in patients with high myopia (> 10.00 D): a 10-year retrospective study. J Refract Surg 23:1–8

    Google Scholar 

  27. Schmack I et al (2010) Refractive surgery trends and practice style changes in Germany over a 3-year period. J Refract Surg 26:202–208

    Article  PubMed  Google Scholar 

  28. Spoerl E et al (2009) Biomechanical condition of the cornea as a new indicator for pathological and structural changes. Ophthalmologe 106(6):512–520

    Article  Google Scholar 

  29. Studer H et al (2010) Biomechanical model of human cornea based on stromal microstructure. J Biomech 43(5):836–842

    Article  PubMed  CAS  Google Scholar 

  30. Zalentein WN et al (2009) Seven-year follow-up of LASIK for myopia. J Refract Surg 25:312–318

    PubMed  Google Scholar 

  31. Liu Z et al (2008) Seven-year follow-up of LASIK for moderate to severe myopia. J Refract Surg 24:935–940

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Uthoff MD, FSES, FABI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthoff, D., Hebestedt, K., Duncker, G. et al. Einfluss der kornealen Biomechanik auf die Myopieregression nach Laser-in-situ-Keratomileusis. Ophthalmologe 110, 41–47 (2013). https://doi.org/10.1007/s00347-012-2633-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2633-9

Schlüsselwörter

Keywords

Navigation