Skip to main content

Advertisement

Log in

Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study

  • Clinical Trials
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

We investigated the influence of abatacept (ABT) on bone mineral density (BMD) and bone metabolic markers (BMMs) in patients with rheumatoid arthritis (RA) compared to other biologic disease-modifying anti-rheumatic drugs (bDMARDs). This prospective, comparative, non-randomized study (the AIRTIGHT study; UMIN000005570) investigated the effects of ABT and other bDMARDs on bone metabolism. A total of 165 RA patients were divided into ABT (n = 50) and non-ABT (n = 115). We evaluated percentage changes in BMD (%ΔBMD) at the lumbar spine and femoral neck using dual-energy X-ray absorptiometry. Urinary levels of cross-linked N-telopeptide of type I collagen (uNTx) and bone-specific alkaline phosphatase (BAP) were used as markers of bone resorption and formation, respectively. No significant differences in 1-year completion rates were seen between ABT (64%) and non-ABT (72%; p = 0.387). The %ΔBMD at the femoral neck was significantly higher in the ABT group (0.97%) than in the non-ABT group (− 2.19%; p = 0.026). Whereas, no significant difference in %ΔBMD at the lumbar spine was observed between groups (ABT, − 0.40%; Non-ABT, − 1.67%; p = 0.524). No significant differences were observed in changes to uNTx or BAP. ABT treatment was significantly associated with increased BMD at the femoral neck (odds ratio (OR) 8.84; 95% CI 1.08–72.4; p = 0.04), and baseline lumbar osteoarthritis was significantly associated with BMD at the lumbar spine (OR 2.97; 95% CI 1.23–7.13; p = 0.02). The efficacy of ABT for increasing BMD at the femoral neck was superior to that of other bDMARDs. ABT may offer good efficacy for improving BMD at the femoral neck in patients with RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43(3):522–530. https://doi.org/10.1002/1529-0131(200003)43:3%3C522::AID-ANR7%3E3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  2. Peel NF, Moore DJ, Barrington NA, Bax DE, Eastell R (1995) Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. Ann Rheum Dis 54(10):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54(10):3104–3112. https://doi.org/10.1002/art.22117

    Article  PubMed  Google Scholar 

  4. Wright NC, Lisse JR, Walitt BT, Eaton CB, Chen Z, Women’s Health Initiative I (2011) Arthritis increases the risk for fractures–results from the Women’s Health Initiative. J Rheumatol 38(8):1680–1688. https://doi.org/10.3899/jrheum.101196

    Article  PubMed  PubMed Central  Google Scholar 

  5. Braun T, Schett G (2012) Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep 10(2):101–108. https://doi.org/10.1007/s11914-012-0104-5

    Article  PubMed  Google Scholar 

  6. Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15(6):993–1000. https://doi.org/10.1359/jbmr.2000.15.6.993

    Article  PubMed  Google Scholar 

  7. van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13(10):777–787. https://doi.org/10.1007/s001980200108

    Article  PubMed  Google Scholar 

  8. Vis M, Guler-Yuksel M, Lems WF (2013) Can bone loss in rheumatoid arthritis be prevented? Osteoporos Int 24(10):2541–2553. https://doi.org/10.1007/s00198-013-2334-5

    Article  CAS  PubMed  Google Scholar 

  9. Okano T, Koike T, Tada M, Sugioka Y, Mamoto K, Wakitani S, Nakamura H (2014) The limited effects of anti-tumor necrosis factor blockade on bone health in patients with rheumatoid arthritis under the use of glucocorticoid. J Bone Miner Metab 32(5):593–600. https://doi.org/10.1007/s00774-013-0535-9

    Article  CAS  PubMed  Google Scholar 

  10. Tada M, Inui K, Sugioka Y, Mamoto K, Okano T, Koike T, Nakamura H (2016) Reducing glucocorticoid dosage improves serum osteocalcin in patients with rheumatoid arthritis-results from the TOMORROW study. Osteoporos Int 27(2):729–735. https://doi.org/10.1007/s00198-015-3291-y

    Article  CAS  PubMed  Google Scholar 

  11. Haugeberg G, Helgetveit KB, Forre O, Garen T, Sommerseth H, Proven A (2014) Generalized bone loss in early rheumatoid arthritis patients followed for ten years in the biologic treatment era. BMC Musculoskelet Disord 15:289. https://doi.org/10.1186/1471-2474-15-289

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kawai VK, Stein CM, Perrien DS, Griffin MR (2012) Effects of anti-tumor necrosis factor alpha agents on bone. Curr Opin Rheumatol 24(5):576–585. https://doi.org/10.1097/BOR.0b013e328356d212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kume K, Amano K, Yamada S, Kanazawa T, Ohta H, Hatta K, Kuwaba N (2014) The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology 53(5):900–903. https://doi.org/10.1093/rheumatology/ket468

    Article  CAS  PubMed  Google Scholar 

  14. Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M (2006) Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci 1069:420–427. https://doi.org/10.1196/annals.1351.040

    Article  CAS  PubMed  Google Scholar 

  15. Moreland LW, Alten R, Van den Bosch F, Appelboom T, Leon M, Emery P, Cohen S, Luggen M, Shergy W, Nuamah I, Becker JC (2002) Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty–five days after the first infusion. Arthritis Rheum 46(6):1470–1479. https://doi.org/10.1002/art.10294

    Article  CAS  PubMed  Google Scholar 

  16. Emery P, Burmester GR, Bykerk VP, Combe BG, Furst DE, Barre E, Karyekar CS, Wong DA, Huizinga TW (2015) Evaluating drug-free remission with abatacept in early rheumatoid arthritis: results from the phase 3b, multicentre, randomised, active-controlled AVERT study of 24 months, with a 12-month, double-blind treatment period. Ann Rheum Dis 74(1):19–26. https://doi.org/10.1136/annrheumdis-2014-206106

    Article  CAS  PubMed  Google Scholar 

  17. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, Saldate C, Li T, Aranda R, Becker JC, Lin C, Cornet PL, Dougados M (2008) Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 67(8):1096–1103. https://doi.org/10.1136/ard.2007.080002

    Article  CAS  PubMed  Google Scholar 

  18. Schiff M, Weinblatt ME, Valente R, van der Heijde D, Citera G, Elegbe A, Maldonado M, Fleischmann R (2014) Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: two-year efficacy and safety findings from AMPLE trial. Ann Rheum Dis 73(1):86–94. https://doi.org/10.1136/annrheumdis-2013-203843

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi N, Kojima T, Kaneko A, Kida D, Hirano Y, Fujibayashi T, Yabe Y, Takagi H, Oguchi T, Miyake H, Kato T, Watanabe T, Hayashi M, Kanayama Y, Funahashi K, Asai S, Yoshioka Y, Takemoto T, Terabe K, Asai N, Ishiguro N (2015) Longterm efficacy and safety of abatacept in patients with rheumatoid arthritis treated in routine clinical practice: effect of concomitant methotrexate after 24 weeks. J Rheumatol 42(5):786–793. https://doi.org/10.3899/jrheum.141288

    Article  CAS  PubMed  Google Scholar 

  20. Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z, Mueller-Schmucker S, Kroczek RA, Heinzerling L, Moser M, Mellor AL, David JP, Schett G (2014) T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med 6(235):235ra260. https://doi.org/10.1126/scitranslmed.3007764

    Article  Google Scholar 

  21. Roser-Page S, Vikulina T, Zayzafoon M, Weitzmann MN (2014) CTLA-4Ig-induced T cell anergy promotes Wnt-10b production and bone formation in a mouse model. Arthritis Rheumatol 66(4):990–999. https://doi.org/10.1002/art.38319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324

    Article  CAS  PubMed  Google Scholar 

  23. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  24. Prevoo ML, van ‘t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–48

    Article  CAS  PubMed  Google Scholar 

  25. Bonnick SL, Johnston CC Jr, Kleerekoper M, Lindsay R, Miller P, Sherwood L, Siris E (2001) Importance of precision in bone density measurements. J Clin Densitom 4(2):105–110

    Article  CAS  PubMed  Google Scholar 

  26. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7(6):625–632. https://doi.org/10.1002/jbmr.5650070606

    Article  CAS  PubMed  Google Scholar 

  27. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35(4):309–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Atsuko Kamiyama and Tomoko Nakatsuka for their special efforts as research coordinators in managing the quality of data. We greatly appreciate the cooperation of the patients with RA who participated in this study. Our manuscript was proofread in English by Forte Science Communications (Tokyo, Japan), but there were no other external editors.

Author information

Authors and Affiliations

Authors

Contributions

Study design: MT and TK. Study conduct: TK. Data collection: TO, YS, and KM. Data analysis: MT and TK. Data interpretation: MT, TK, and KI. Drafting of the manuscript: MT, TK, and KI. Approval of the final version of the manuscript: all authors.

Corresponding author

Correspondence to Tatsuya Koike.

Ethics declarations

Ethical standards

All Ethics Committee at Osaka City University approved, Kitade Hospital, and Shirahama Hamayu Hospital the study protocol.

Informed consent

We obtained written informed consent from all patients and volunteers to participate in this study in accordance with the Declaration of Helsinki.

Conflict of interest

Prof. Koike has received research fees, consulting fees, or other remuneration from AbbVie, Astellas Pharma Inc., Bristol-Myers Squibb, Chugai Pharmaceutical, Eisai, Janssen, Lilly, Mitsubishi Tanabe Pharma Corporation, Ono Pharmaceutical, Pfizer, Takeda Pharmaceutical, Teijin Pharma, and UCB. Prof. Inui has received research grants and/or speaking fees from Chugai Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Co., Astellas Pharma Inc., AbbVie, Eisai Co., Ltd., MSD K.K., Bristol-Myers K.K., Takeda Pharmaceutical Co., Ltd. and Janssen Pharmaceutical K.K., Dr. Okano received speaking fees from AbbVie. The other authors have no conflicts of interest to disclose.

Disclosure

We made a poster presentation with this content in EULAR (European League Against Rheumatism) 2015. Title was “Influence of biologic agents on bone mineral density and bone mineral markers in patients with rheumatoid arthritis: data from the AIRTIGHT study”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, M., Inui, K., Sugioka, Y. et al. Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study. Rheumatol Int 38, 777–784 (2018). https://doi.org/10.1007/s00296-017-3922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3922-z

Keywords

Navigation