Skip to main content
Log in

Zytologie als Material für die Molekularpathologie

Cytological material for molecular pathology

  • Schwerpunkt: Rolle der Zytopathologie in der Pathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Personalisierte Therapiekonzepte, bei denen der Wirkstoff auf die genetischen Veränderungen im Tumor des Patienten abgestimmt ist, haben in den letzten Jahren zu einem Paradigmenwechsel in der Onkologie geführt. Eine umfassende molekulardiagnostische Tumorcharakterisierung vor Therapiebeginn ist daher essenziell, um die für den Patienten optimale Therapie auszuwählen. Die kontinuierlich steigende Zahl therapierbarer Genveränderungen und bekannter Resistenzmechanismen bei limitierter Verfügbarkeit von Probenmaterial stellt die molekulare Diagnostik dabei vor völlig neue Herausforderungen. Die Möglichkeit, nicht nur in Paraffin eingebettetem Tumorgewebe, sondern auch in Zytologien oder sogar zirkulierender Tumor-DNA Mutationen, Translokationen und Kopienzahlveränderungen bestimmen zu können, dehnt die diagnostischen Möglichkeiten erheblich aus.

Abstract

Personalized therapy concepts in which the active agent is adapted to genetic alterations in the tumor of the patient, have in recent years led to a paradigm shift in oncology. A comprehensive molecular diagnostic tumor characterization is therefore essential before initiating therapy in order to select the optimal therapy for the patient. The continuously increasing number of genetic alterations which can be treated and known resistance mechanisms together with limited availability of test material represents a completely new challenge for molecular diagnostics. The possibility of being able to determine mutations, translocations and changes in the number of copies not only from paraffin-embedded tumor tissue but also from cytological material and even circulating tumor DNA, substantially extends the diagnostic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bellevicine C, Malapelle U, Vigliar E et al (2014) Epidermal growth factor receptor test performed on liquid-based cytology lung samples: experience of an academic referral center. Acta Cytol 58:589–594. doi:10.1159/000369756

    Article  PubMed  Google Scholar 

  2. da Cunha Santos G, Schroder M, Zhu JB et al (2013) Minimizing delays in DNA retrieval: the „freezer method“ for glass coverslip removal. Letter to the editor regarding comparative study of epidermal growth factor receptor mutation analysis on cytology smears and surgical pathology specimens from primary and metastatic lung carcinomas. Cancer Cytopathol 121:533–533. doi:10.1002/cncy.21306

    Article  Google Scholar 

  3. Eigentler TK, Meier F, Garbe C (2013) Protein kinase inhibitors in melanoma. Expert Opin Pharmacother 14:2195–2201. doi:10.1517/14656566.2013.827172

    Article  CAS  PubMed  Google Scholar 

  4. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043. doi:10.1126/science.1141478

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Cuesta L, Plenker D, Osada H et al (2014) CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov 4(4):415–422. doi:10.1158/2159-8290.CD-13-0633

    Article  CAS  PubMed  Google Scholar 

  6. Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023–1031. doi:10.1038/nbt.2696

    Article  CAS  PubMed  Google Scholar 

  7. Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189. doi:10.1038/nbt.1523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hadd AG, Houghton J, Choudhary A et al (2013) Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn 15:234–247. doi:10.1016/j.jmoldx.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Hagemann IS, Cottrell CE, Lockwood CM (2013) Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Cancer Genetics 206:420–431. doi:10.1016/j.cancergen.2013.11.003

    Article  PubMed  Google Scholar 

  10. Heuckmann JM, Thomas RK (2015) A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine. Annals of Oncology. doi:10.1093/annonc/mdv184

  11. Jain D, Mathur SR, Iyer VK (2014) Cell blocks in cytopathology: a review of preparative methods, utility in diagnosis and role in ancillary studies. Cytopathology 25:356–371. doi:10.1111/cyt.12174

    CAS  PubMed  Google Scholar 

  12. Kanagal-Shamanna R, Portier BP, Singh RR et al (2014) Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Modern Pathology 27:314–327. doi:10.1038/modpathol.2013.122

    Article  CAS  PubMed  Google Scholar 

  13. Karnes HE, Duncavage EJ, Bernadt CT (2014) Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol 122:104–113. doi:10.1002/cncy.21361

    Article  CAS  PubMed  Google Scholar 

  14. Kerick M, Isau M, Timmermann B et al (2011) Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics 4:68. doi:10.1186/1755-8794-4-68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kerr KM, Bubendorf L, Edelman MJ et al (2014) Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol 25(9):1681–1690 (Oxford University Press)

    Article  CAS  PubMed  Google Scholar 

  16. Lozano MD, Labiano T, Echeveste J et al (2015) Assessment of EGFR and KRAS mutation status from FNAs and core-needle biopsies of non-small cell lung cancer. Cancer Cytopathol 123:230–236. doi:10.1002/cncy.21513

    Article  CAS  PubMed  Google Scholar 

  17. Malchers F, Dietlein F, Schöttle J et al (2014) Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discov 4(2):246–257. doi:10.1158/2159-8290.CD-13-0323

    Article  CAS  PubMed  Google Scholar 

  18. Malchers F, Dietlein F, Schöttle J et al (2014) Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discov 4:246–257. doi:10.1158/2159-8290.CD-13-0323

    Article  CAS  PubMed  Google Scholar 

  19. Mazieres J, Peters S, Lepage B et al (2013) Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31:1997–2003. doi:10.1200/JCO.2012.45.6095

    Article  CAS  PubMed  Google Scholar 

  20. Mazieres J, Zalcman G, Crinó L et al (2015) Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol 33:992–999. doi:10.1200/JCO.2014.58.3302

    Article  CAS  PubMed  Google Scholar 

  21. Mok TS, Wu Y-L, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957. doi:10.1056/NEJMoa0810699

    Article  CAS  PubMed  Google Scholar 

  22. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73. doi:10.1371/journal.pmed.0020073

    Article  PubMed Central  PubMed  Google Scholar 

  23. Peifer M, Fernández-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110. doi:10.1038/ng.2396

    Article  CAS  PubMed  Google Scholar 

  24. Savic S, Bubendorf L (2012) Role of fluorescence in situ hybridization in lung cancer cytology. Acta Cytol 56:611–621. doi:10.1159/000339792

    Article  CAS  PubMed  Google Scholar 

  25. Savic S, Bihl MP, Bubendorf L (2012) [Non-small cell lung cancer. Subtyping and predictive molecular marker investigations in cytology]. Pathologe 33:301–307. doi:10.1007/s00292-012-1577-9

    Article  CAS  PubMed  Google Scholar 

  26. Savic S, Bode B, Diebold J et al (2013) Detection of ALK-positive non-small-cell lung cancers on cytological specimens: high accuracy of immunocytochemistry with the 5A4 clone. J Thorac Oncol 8:1004–1011. doi:10.1097/JTO.0b013e3182936ca9

    Article  CAS  PubMed  Google Scholar 

  27. Savic S, Glatz K, Schoenegg R et al (2006) Multitarget fluorescence in situ hybridization elucidates equivocal lung cytology. Chest 129:1629–1635. doi:10.1378/chest.129.6.1629

    Article  PubMed  Google Scholar 

  28. Shaw AT, Kim D-W, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394. doi:10.1056/NEJMoa1214886

    Article  CAS  PubMed  Google Scholar 

  29. Smith IE (2001) Efficacy and safety of Herceptin in women with metastatic breast cancer: results from pivotal clinical studies. Anticancer Drugs 12(Suppl 4):3–10

    Article  Google Scholar 

  30. The Clinical Lung Cancer Genome Project (CLCGP), Network Genomic Medicine (NGM) (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153–209ra153. doi:10.1126/scitranslmed.3006802

    Google Scholar 

  31. Thunnissen E, Kerr KM, Herth FJF et al (2012) The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 76:1–18. doi:10.1016/j.lungcan.2011.10.017

    Article  PubMed  Google Scholar 

  32. Warth A, Bubendorf L, Gütz S et al (2013) [Molecular pathological diagnosis in cytopathology of non-small-cell lung cancer. Standardization of specimen processing]. Pathologe 34:310–317. doi:10.1007/s00292-013-1764-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.C. Heukamp.

Ethics declarations

Interessenkonflikt

L.C. Heukamp und L. Bubendorf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeberin

R. Knüchel-Clarke, Aachen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heukamp, L., Bubendorf, L. Zytologie als Material für die Molekularpathologie. Pathologe 36, 566–571 (2015). https://doi.org/10.1007/s00292-015-0059-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0059-2

Schlüsselwörter

Keywords

Navigation