Skip to main content
Log in

Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The analysis of total plasma DNA and the monitoring of leukemic clone-specific immunoglobulin and/or T-cell receptor gene rearrangements for the evaluation of minimal residual disease (MRD) in the plasma may be useful tools for prognostic purposes or for early detection of subclinical disease recurrence in children with acute lymphoblastic leukemia (ALL). The aim of this paper is to establish reference ranges for total plasma DNA concentrations and to test the feasibility of MRD measurements employing plasma DNA from children with ALL by using real-time quantitative (RQ)-PCR. Despite wide inter-individual variation, the median concentrations of total plasma DNA for 12 healthy donors (57 ng/ml), 21 children with ALL after day 4 of treatment initiation (62 ng/ml) and 13 children with other malignancies (76 ng/ml) were similar. However, ALL patients had significantly higher concentrations at diagnosis (277 ng/ml) and on treatment day 3 (248 ng/ml) before returning to normal afterwards. Early plasma DNA MRD kinetics could be established for 15 ALL patients and showed good concordance with bone marrow MRD. Plasma DNA was higher in children with ALL at diagnosis but returned to normal within the first four treatment days. Despite low concentrations of DNA, it is feasible to measure MRD kinetics in plasma DNA during ALL induction therapy by adapted real-time PCR methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    PubMed  CAS  Google Scholar 

  2. Shapiro B, Chakrabarty M, Cohn EM, Leon SA (1983) Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51:2116–2120 doi:10.1002/1097-0142(19830601)51:11<2116::AID-CNCR2820511127>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  3. Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA (1987) Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 23:707–712 doi:10.1016/0277-5379(87)90266-5

    Article  PubMed  CAS  Google Scholar 

  4. Anker P, Stroun M (2001) Tumor-related alterations in circulating DNA, potential for diagnosis, prognosis and detection of minimal residual disease. Leukemia 15:289–291 doi:10.1038/sj.leu.2402016

    Article  PubMed  CAS  Google Scholar 

  5. Anker P, Lefort F, Vasioukhin V, Lyautey J, Lederrey C, Chen XQ, Stroun M, Mulcahy HE, Farthing MJ (1997) K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 112:1114–1120 doi:10.1016/S0016-5085(97)70121-5

    Article  PubMed  CAS  Google Scholar 

  6. Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, Lederrey C, Anker P (1996) Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 2:1033–1035 see comments doi:10.1038/nm0996-1033

    Article  PubMed  CAS  Google Scholar 

  7. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D (1996) Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 2:1035–1037 doi:10.1038/nm0996-1035

    Article  PubMed  CAS  Google Scholar 

  8. Goessl C, Heicappell R, Munker R, Anker P, Stroun M, Krause H, Muller M, Miller K (1998) Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res 58:4728–4732

    PubMed  CAS  Google Scholar 

  9. Fujiwara Y, Chi DD, Wang H, Keleman P, Morton DL, Turner R, Hoon DS (1999) Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res 59:1567–1571

    PubMed  CAS  Google Scholar 

  10. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59:67–70

    PubMed  CAS  Google Scholar 

  11. Wong IH, Lo YM, Zhang J, Liew CT, Ng MH, Wong N, Lai PB, Lau WY, Hjelm NM, Johnson PJ (1999) Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 59:71–73

    PubMed  CAS  Google Scholar 

  12. Silva JM, Dominguez G, Villanueva MJ, Gonzalez R, Garcia JM, Corbacho C, Provencio M, Espana P, Bonilla F (1999) Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 80:1262–1264 doi:10.1038/sj.bjc.6690495

    Article  PubMed  CAS  Google Scholar 

  13. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86:774–779 doi:10.1111/j.1365-2141.1994.tb04828.x

    Article  PubMed  CAS  Google Scholar 

  14. Frickhofen N, Muller E, Sandherr M, Binder T, Bangerter M, Wiest C, Enz M, Heimpel H (1997) Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood 90:4953–4960

    PubMed  CAS  Google Scholar 

  15. Rogers A, Joe Y, Manshouri T, Dey A, Jilani I, Giles F, Estey E, Freireich E, Keating M, Kantarjian H, Albitar M (2004) Relative increase in leukemia-specific DNA in peripheral blood plasma from patients with acute myeloid leukemia and myelodysplasia. Blood 103:2799–2801 doi:10.1182/blood-2003-06-1840

    Article  PubMed  CAS  Google Scholar 

  16. Stanulla M, Schrappe M (2009) Treatment of childhood acute lymphoblastic leukemia. Semin Hematol 46:52–63 doi:10.1053/j.seminhematol.2008.09.007

    Article  PubMed  Google Scholar 

  17. Cario G, Stanulla M, Fine BM, Teuffel O, Neuhoff NV, Schrauder A, Flohr T, Schafer BW, Bartram CR, Welte K, Schlegelberger B, Schrappe M (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105:821–826 doi:10.1182/blood-2004-04-1552

    Article  PubMed  CAS  Google Scholar 

  18. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E (1998) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med 339:591–598 see comments doi:10.1056/NEJM199808273390904

    Article  PubMed  CAS  Google Scholar 

  19. van Dongen JJM, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig W-D, Basso G, de Bruijn MAC, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WCJ, Riehm H, Bartram CR (1998) Prognostic value of minimal residual disease in childhood acute lymphoblastic leukemia: a prospective study of the International BFM Study Group. Lancet 352:1731–1738 doi:10.1016/S0140-6736(98)04058-6

    Article  PubMed  Google Scholar 

  20. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schafer BW, Sutton R, Koehler R, Zimmermann M, Valsecchi MG, Gadner H, Masera G, Schrappe M, van Dongen JJ, Biondi A, Bartram CR (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 31:31

    Google Scholar 

  21. Lee TH, Montalvo L, Chrebtow V, Busch MP (2001) Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 41:276–282 doi:10.1046/j.1537-2995.2001.41020276.x

    Article  PubMed  CAS  Google Scholar 

  22. Anker P, Stroun M, Maurice PA (1975) Spontaneous release of DNA by human blood lymphoctyes as shown in an in vitro system. Cancer Res 35:2375–2382

    PubMed  CAS  Google Scholar 

  23. Nakao M, Janssen JW, Flohr T, Bartram CR (2000) Rapid and reliable quantification of minimal residual disease in acute lymphoblastic leukemia using rearranged immunoglobulin and T-cell receptor loci by LightCycler technology. Cancer Res 60:3281–3289

    PubMed  CAS  Google Scholar 

  24. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17:1013–1034 doi:10.1038/sj.leu.2402922

    Article  PubMed  CAS  Google Scholar 

  25. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, Trka J, Eckert C, Foroni L, Zur Stadt U, Beldjord K, Raff T, van der Schoot CE, van Dongen JJ (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611

    PubMed  Google Scholar 

  26. van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, Basso G, Schrappe M, Wijkhuijs JM, Konrad M, Bartram CR, Masera G, Biondi A, van Dongen JJ (2007) Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 21:706–713

    PubMed  Google Scholar 

  27. Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ, Anker P (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    Article  PubMed  CAS  Google Scholar 

  28. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46:318–322

    Article  PubMed  CAS  Google Scholar 

  29. Fournie GJ, Courtin JP, Laval F, Chale JJ, Pourrat JP, Pujazon MC, Lauque D, Carles P (1995) Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett 91:221–227 doi:10.1016/0304-3835(95)03742-F

    Article  PubMed  CAS  Google Scholar 

  30. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    PubMed  CAS  Google Scholar 

  31. Li CN, Hsu HL, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Cell-free DNA is released from tumor cells upon cell death: a study of tissue cultures of tumor cell lines. J Clin Lab Anal 17:103–107 doi:10.1002/jcla.10081

    Article  PubMed  CAS  Google Scholar 

  32. Jachertz D, Anker P, Maurice PA, Stroun M (1979) Information carried by the DNA released by antigen-stimulated lymphocytes. Immunology 37:753–763

    PubMed  CAS  Google Scholar 

  33. Stroun M, Lyautey J, Lederrey C, Mulcahy HE, Anker P (2001) Alu repeat sequences are present in increased proportions compared to a unique gene in plasma/serum DNA: evidence for a preferential release from viable cells? Ann N Y Acad Sci 945:258–264

    PubMed  CAS  Google Scholar 

  34. Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, Rubnitz JE, Sandlund JT, Pui CH, Campana D (2002) Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 100:2399–2402 doi:10.1182/blood-2002-04-1130

    Article  PubMed  CAS  Google Scholar 

  35. van der Velden VH, Jacobs DC, Wijkhuijs AJ, Comans-Bitter WM, Willemse MJ, Hahlen K, Kamps WA, van Wering ER, van Dongen JJ (2002) Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 16:1432–1436 doi:10.1038/sj.leu.2402636

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the cooperation of all patients and their parents, nurses, and physicians who contributed to the collection of samples for this study. We thank Nicole Wittner for expert technical assistance and Dr. Martin Zimmermann for statistical tests and discussion. This work was supported by the Deutsche Krebshilfe (Bonn, Germany) and the Leukemia Research Foundation (Chicago, IL, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schrauder.

Additional information

This work was supported by the Deutsche Krebshilfe (Bonn, Germany) and the Leukemia Research Foundation (Chicago, IL, USA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, A.K., Stanulla, M., Cario, G. et al. Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia. Ann Hematol 88, 897–905 (2009). https://doi.org/10.1007/s00277-009-0698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0698-6

Keywords

Navigation