Skip to main content

Advertisement

Log in

Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to estimate the receptor-ligand binding of an arginine-glycine-aspartic acid (RGD) peptide in somatic tumours. To this aim, we employed dynamic positron emission tomography (PET) data obtained from breast cancer patients with metastases, studied with the αvβ3/5 integrin receptor radioligand [18F]fluciclatide.

Methods

First, compartmental modelling and spectral analysis with arterial input function were performed at the region of interest (ROI) level in healthy lung and liver, and in lung and liver metastases; compartmental modelling was also carried out at the pixel level. The selection of the most appropriate indexes for tumour/healthy tissue differentiation and for estimation of specific binding was then assessed.

Results

The two-tissue reversible model emerged as the best according to the Akaike Information Criterion. Spectral analysis confirmed the reversibility of tracer kinetics. Values of kinetic parameters, estimated as mean from parametric maps, correlated well with those computed from ROI analysis. The volume of distribution VT was on average higher in lung metastases than in the healthy lung, but lower in liver metastases than in the healthy liver. In agreement with the expected higher αvβ3/5 expression in pathology, k3 and k3/k4 were both remarkably higher in metastases, which makes them more suitable than VT for tumour/healthy tissue differentiation. The ratio k3/k4, in particular, appeared a reasonable measure of specific binding.

Conclusion

Besides establishing the best quantitative approaches for the analysis of [18F]fluciclatide data, this study indicated that the k3/k4 ratio is a reasonable measure of specific binding, suggesting that this index can be used to estimate αvβ3/5 receptor expression in oncology, although further studies are necessary to validate this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 2008;49(3):367–74. doi:10.2967/jnumed.107.047506.

    Article  PubMed  Google Scholar 

  2. Sekar TV, Dhanabalan A, Paulmurugan R. Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol 2011;12:508–27. doi:BSP/CPB/E-Pub/00082-12-7.

    Google Scholar 

  3. Nagengast WB, Lub-de Hooge MN, Oosting SF, den Dunnen WF, Warnders FJ, Brouwers AH et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res 2011;71(1):143–53. doi:10.1158/0008-5472.CAN-10-1088.

    Google Scholar 

  4. Bombardieri E, Coliva A, Maccauro M, Seregni E, Orunesu E, Chiti A et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 2010;54(1):3–15. doi:R39102241.

    Google Scholar 

  5. Pantaleo MA, Mishani E, Nanni C, Landuzzi L, Boschi S, Nicoletti G et al. Evaluation of modified PEG-anilinoquinazoline derivatives as potential agents for EGFR imaging in cancer by small animal PET. Mol Imaging Biol 2010;12(6):616–25. doi:10.1007/s11307-010-0315-z.

    Google Scholar 

  6. Brooks PC. Role of integrins in angiogenesis. Eur J Cancer 1996;32A(14):2423–9.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 1999;18(3):345–57.

    Article  PubMed  CAS  Google Scholar 

  8. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, et al. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 1998;4(11):2625–34.

    PubMed  CAS  Google Scholar 

  9. Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006;312(5777):1171–5. doi:10.1126/science.1125950.

    Article  PubMed  CAS  Google Scholar 

  10. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005;2(3):e70. doi:10.1371/journal.pmed.0020070.

    Article  PubMed  Google Scholar 

  11. McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osman S, Khela MK, et al. The biodistribution and radiation dosimetry of the Arg-Gly-Asp peptide 18F-AH111585 in healthy volunteers. J Nucl Med 2008;49(10):1664–7. doi:10.2967/jnumed.108.052126.

    Article  PubMed  Google Scholar 

  12. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49(6):879–86. doi:10.2967/jnumed.107.049452.

    Article  PubMed  Google Scholar 

  13. Glaser M, Morrison M, Solbakken M, Arukwe J, Karlsen H, Wiggen U, et al. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug Chem 2008;19(4):951–7. doi:10.1021/bc700472w.

    Article  PubMed  CAS  Google Scholar 

  14. Tomasi G, Bertoldo A, Bishu S, Unterman A, Smith CB, Schmidt KC. Voxel-based estimation of kinetic model parameters of the L-[1-(11)C]leucine PET method for determination of regional rates of cerebral protein synthesis: validation and comparison with region-of-interest-based methods. J Cereb Blood Flow Metab 2009;29(7):1317–31. doi:10.1038/jcbfm.2009.52.

    Article  PubMed  CAS  Google Scholar 

  15. Bertoldo A, Vicini P, Sambuceti G, Lammertsma AA, Parodi O, Cobelli C. Evaluation of compartmental and spectral analysis models of [18F]FDG kinetics for heart and brain studies with PET. IEEE Trans Biomed Eng 1998;45(12):1429–48. doi:10.1109/10.730437.

    Article  PubMed  CAS  Google Scholar 

  16. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974;19(6):716–23.

    Article  Google Scholar 

  17. Turkheimer FE, Hinz R, Cunningham VJ. On the undecidability among kinetic models: from model selection to model averaging. J Cereb Blood Flow Metab 2003;23(4):490–8.

    Article  PubMed  Google Scholar 

  18. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 1993;13(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  19. Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F, Schmidt K. The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [18F]fluorodeoxyglucose: theory, implementation, and optimization procedures. J Cereb Blood Flow Metab 1994;14(3):406–22.

    Article  PubMed  CAS  Google Scholar 

  20. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10(5):740–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 2002;22(10):1271–81. doi:10.1097/00004647-200210000-00015.

    Article  PubMed  Google Scholar 

  22. DuBois DDE. A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 1916;17:863–71.

    CAS  Google Scholar 

  23. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13(22 Pt 1):6610–6. doi:10.1158/1078-0432.CCR-07-0528.

    Article  PubMed  CAS  Google Scholar 

  24. Gray KR, Contractor KB, Kenny LM, Al-Nahhas A, Shousha S, Stebbing J, et al. Kinetic filtering of [(18)F]fluorothymidine in positron emission tomography studies. Phys Med Biol 2010;55(3):695–709. doi:10.1088/0031-9155/55/3/010.

    Article  PubMed  CAS  Google Scholar 

  25. Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med 2001;42(5):795–801.

    PubMed  CAS  Google Scholar 

  26. Soo CS, Chuang VP, Wallace S, Charnsangavej C, Carrasco H. Treatment of hepatic neoplasm through extrahepatic collaterals. Radiology 1983;147(1):45–9.

    PubMed  CAS  Google Scholar 

  27. Taylor I, Bennett R, Sherriff S. The blood supply of colorectal liver metastases. Br J Cancer 1978;38(6):749–56.

    Article  PubMed  CAS  Google Scholar 

  28. Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001;49(2):380–9. discussion 390.

    PubMed  CAS  Google Scholar 

  29. Haubrich WS. Kupffer of Kupffer cells. Gastroenterology 2004;127(1):16.

    Article  PubMed  Google Scholar 

  30. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006;12(13):3942–9. doi:10.1158/1078-0432.CCR-06-0266.

    Article  PubMed  CAS  Google Scholar 

  31. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphaVbeta3-integrin and alphaV beta5-integrin imaging agent. J Nucl Med 2011;52(3):424–30. doi:10.2967/jnumed.110.077479.

    Google Scholar 

  32. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007;27(9):1533–9. doi:10.1038/sj.jcbfm.9600493.

    Article  PubMed  CAS  Google Scholar 

  33. Huang SC, Yu DC, Barrio JR, Grafton S, Melega WP, Hoffman JM, et al. Kinetics and modeling of L-6-[18F]fluoro-dopa in human positron emission tomographic studies. J Cereb Blood Flow Metab 1991;11(6):898–913. doi:10.1038/jcbfm.1991.155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Aboagye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasi, G., Kenny, L., Mauri, F. et al. Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging 38, 2186–2197 (2011). https://doi.org/10.1007/s00259-011-1907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1907-9

Keywords

Navigation