Skip to main content

Advertisement

Log in

Bone involvement in patients with lymphoma: the role of FDG-PET/CT

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic impact and clinical significance of FDG-avid bone lesions detected by FDG-PET/CT in patients with lymphoma.

Methods

The study population comprised 50 consecutive patients (mean age 41.7±15.5 years; 27 female, 23 male; 41 staging, 9 restaging) with Hodgkin’s disease (n=22) or aggressive non-Hodgkin’s lymphoma (n=28) in whom FDG-avid bone lesions were detected by FDG-PET/CT. All patients had either direct biopsy of the FDG-avid bone lesion (n=18), standard bone marrow biopsy at the iliac crest (BMB; n=43) or both procedures (n=11). In 15 patients, additional MRI of the bone lesions was performed. All patients underwent FDG-PET/CT after the end of treatment. All CT images of FDG-PET/CT scans were analysed independently regarding morphological osseous changes and compared with FDG-PET results.

Results

In the 50 patients, 193 FDG-avid lesions were found by PET/CT. The mean standardised uptake value was 6.26 (±3.22). All direct bone biopsies (n=18) of the FDG-avid lesions proved the presence of lymphomatous infiltration. BMB (n=43) was positive in 12 patients (27.9%). In CT, 32 of 193 (16.6%) lesions were detected without the PET information. No additional morphological bone infiltration was detected on CT compared with FDG-PET. All morphological bone alterations on CT scans persisted after the end of therapy. Additional PET/CT information regarding uni- or multifocal bone involvement resulted in lymphoma upstaging in 21 (42%) patients compared with the combined information provided by CT and BMB.

Conclusion

In patients with FDG-avid bone lesions, FDG-PET is superior to CT alone or in combination with unilateral BMB in detecting bone marrow involvement, leading to upstaging in a relevant proportion of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998;25:721–8.

    Article  PubMed  CAS  Google Scholar 

  2. Buchmann I, Moog F, Schirrmeister H, Reske SN. Positron emission tomography for detection and staging of malignant lymphoma. Recent Results Cancer Res 2000;156:78–89.

    PubMed  CAS  Google Scholar 

  3. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002;43:1018–27.

    PubMed  Google Scholar 

  4. Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998;91:3340–6.

    PubMed  CAS  Google Scholar 

  5. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998;16:603–9.

    PubMed  CAS  Google Scholar 

  6. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med 2005;46:958–63.

    PubMed  Google Scholar 

  7. Park YH, Kim S, Choi SJ, Ryoo BY, Yang SH, Cheon GJ, et al. Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol 2005;16:1401–2.

    Article  PubMed  CAS  Google Scholar 

  8. Park YH, Choi SJ, Ryoo BY, Kim HT. PET imaging with F-18 fluorodeoxyglucose for primary lymphoma of bone. Clin Nucl Med 2005;30:131–4.

    Article  PubMed  Google Scholar 

  9. Wang J, Weiss LM, Chang KL, Slovak ML, Gaal K, Forman SJ, et al. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. Cancer 2002;94:1522–31.

    Article  PubMed  Google Scholar 

  10. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med 1993;329:987–94.

  11. Jost LM, Kloke O, Stahel RA. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of newly diagnosed large cell non-Hodgkin’s lymphoma. Ann Oncol 2005;16 Suppl 1:i58–9.

    Article  PubMed  Google Scholar 

  12. Jost LM, Stahel RA. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of Hodgkin’s disease. Ann Oncol 2005;16 Suppl 1:i54–5.

    Article  PubMed  Google Scholar 

  13. Macintyre EA, Vaughan Hudson B, Linch DC, Vaughan Hudson G, Jelliffe AM, et al. The value of staging bone marrow trephine biopsy in Hodgkin’s disease. Eur J Haematol 1987;39:66.

    Article  PubMed  CAS  Google Scholar 

  14. Vassilakopoulos TP, Angelopoulou MK, Constantinou N, Karmiris T, Repoussis P, Roussou P, et al. Development and validation of a clinical prediction rule for bone marrow involvement in patients with Hodgkin lymphoma. Blood 2005;105:1875–80.

    Article  PubMed  CAS  Google Scholar 

  15. Munker R, Hasenclever D, Brosteanu O, Hiller E, Diehl V. Bone marrow involvement in Hodgkin’s disease: an analysis of 135 consecutive cases. German Hodgkin’s Lymphoma Study Group. J Clin Oncol 1995;13:403.

    PubMed  CAS  Google Scholar 

  16. Howard MR, Taylor PR, Lucraft HH, Taylor MJ, Proctor SJ. Bone marrow examination in newly diagnosed Hodgkin’s disease: current practice in the United Kingdom. Br J Cancer 1995;71:210–2.

    PubMed  CAS  Google Scholar 

  17. Foucar K, McKenna RW, Frizzera G, Brunning RD. Bone marrow and blood involvement by lymphoma in relationship to the Lukes-Collins classification. Cancer 1982;49:888.

    Article  PubMed  CAS  Google Scholar 

  18. Conlan MG, Bast, M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-Hodgkin’s lymphoma: The clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol 1990;8:1163.

    PubMed  CAS  Google Scholar 

  19. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology 2005;237:627–34.

    Article  PubMed  Google Scholar 

  20. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 1998;25:1244–7.

    Article  PubMed  CAS  Google Scholar 

  21. Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 1999;40:1407–13.

    PubMed  CAS  Google Scholar 

  22. Mengiardi B, Honegger H, Hodler J, Exner UG, Csherhati MD, Bruhlmann W. Primary lymphoma of bone: MRI and CT characteristics during and after successful treatment. Am J Roentgenol 2005;184:185–92.

    Google Scholar 

  23. Stiglbauer R, Augustin I, Kramer J, Schurawitzki H, Imhof H, Radaszkiewicz T. MRI in the diagnosis of primary lymphoma of bone: correlation with histopathology. J Comput Assist Tomogr 1992;16:248–53.

    Article  PubMed  CAS  Google Scholar 

  24. Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, Babyn PS. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 2004;14:1829–41.

    Article  PubMed  Google Scholar 

  25. Mink J. Percutaneous bone biopsy in the patient with known or suspected osseous metastasis. Radiology 1986;161:191–4.

    PubMed  CAS  Google Scholar 

  26. Kaim AH, Burger C, Ganter CC, Goerres GW, Kamel E, Weishaupt D, et al. PET-CT-guided percutaneous puncture of an infected cyst in autosomal dominant polycystic kidney disease: case report. Radiology 2001;221:818–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklaus G. Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, N.G., Strobel, K., Taverna, C. et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imaging 34, 60–67 (2007). https://doi.org/10.1007/s00259-006-0238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0238-8

Keywords

Navigation