Skip to main content
Log in

Diffusion-weighted imaging in pediatric body magnetic resonance imaging

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diffusion-weighted MRI is being increasingly used in pediatric body imaging. Its role is still emerging. It is used for detection of tumors and abscesses, differentiation of benign and malignant tumors, and detection of inflamed bowel segments in inflammatory bowel disease in children. It holds great promise in the assessment of therapy response in body tumors, with apparent diffusion coefficient (ADC) value as a potential biomarker. Significant overlap of ADC values of benign and malignant processes and less reproducibility of ADC measurements are hampering its widespread use in clinical practice. With standardization of the technique, diffusion-weighted imaging (DWI) is likely to be used more frequently in clinical practice. We discuss the principles and technique of DWI, selection of b value, qualitative and quantitative assessment, and current status of DWI in evaluation of disease processes in the pediatric body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  2. Qayyum A (2009) Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 29:1797–1810

    Article  PubMed  Google Scholar 

  3. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  4. Chavhan GB, Alsabban Z, Babyn PS (2014) Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics 34:E73–E78

    Article  PubMed  Google Scholar 

  5. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  6. Kwee TC, Takahara T, Ochiai R et al (2009) Diffusion-weighted whole-body imaging. Eur J Radiol 70:409–417

    Article  PubMed  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intra-voxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  8. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361

    Article  PubMed  Google Scholar 

  9. Alibek S, Cavallaro A, Alpas A et al (2009) Diffusion weighted imaging of pediatric and adolescent malignancies with regards to detection and delineation: initial experience. Acad Radiol 16:866–671

    Article  PubMed  Google Scholar 

  10. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  11. Uhl M, Altehoefer C, Kontny U et al (2002) MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol 12:2335–2338

    Article  CAS  PubMed  Google Scholar 

  12. Gahr N, Darge K, Hahn G et al (2011) Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma. Eur J Radiol 79:443–446

    Article  PubMed  Google Scholar 

  13. Gawande RS, Gonzalez G, Messing S et al (2013) Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 43:836–845

    Article  PubMed  Google Scholar 

  14. Kocaoglu M, Bulakbasi N, Sanal HT et al (2010) Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 28:629–636

    Article  PubMed  Google Scholar 

  15. Miquel ME, Scott AD, Macdougall ND et al (2012) In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 85:1507–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Braithwaite AC, Dale BM, Boll DT et al (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250:459–465

    Article  PubMed  Google Scholar 

  17. Littooij AS, Kwee TC, de Keizer B et al (2015) Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: a prospective multicenter study. J Magn Reson Imaging 42:1646–1655

    Article  PubMed  Google Scholar 

  18. Liu L, Wu N, Quyang H et al (2014) Diffusion-weighted MRI in early assessment of tumor response to radiotherapy in high-risk prostate cancer. Br J Radiol 87:20140359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blackledge MD, Collins DJ, Tunariu N et al (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9, e91779

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Liu X, Zheng D et al (2014) Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging 32:630–637

    Article  CAS  PubMed  Google Scholar 

  21. Wang CS, Du LJ, Si MJ et al (2013) Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study. PLoS One 8, e72679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bajpai J, Gamnagatti S, Kumar R et al (2011) Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histopathological necrosis. Pediatr Radiol 41:441–450

    Article  PubMed  Google Scholar 

  23. McDonald K, Sebire NJ, Anderson J et al (2011) Patterns of shift in ADC distributions in abdominal tumors during chemotherapy — feasibility study. Pediatr Radiol 41:99–106

    Article  PubMed  Google Scholar 

  24. Littooij AS, Humphries PD, Olsen OE (2015) Intra-and interobserver variability of whole-tumour apparent diffusion coefficient measurements in nephroblastoma: a pilot study. Pediatr Radiol 45:1651–1660

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kwee TC, Takahara T, Vermoolen MA et al (2010) Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol 40:1592–1602

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Kellokumpu-Lehtinen PL, Pertovaara H et al (2011) Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma — a pilot study: comparison with 2-deoxy-2-fluoro-D-glucose-positron emission tomography/computed tomography. NMR Biomed 24:1181–1190

    Article  CAS  PubMed  Google Scholar 

  27. Soyer P, Boudiaf M, Place V et al (2011) Preoperative detection of hepatic metastases: comparison of diffusion-weighted, T2-weighted fast spin echo and gadolinium-enhanced MR imaging using surgical and histopathologic findings as standard of reference. Eur J Radiol 80:245–252

    Article  PubMed  Google Scholar 

  28. Yang DM, Jahng GH, Kim HC et al (2011) The detection and discrimination of malignant and benign focal hepatic lesions: T2 weighted vs diffusion-weighted MRI. Br J Radiol 84:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822

    Article  PubMed  Google Scholar 

  30. Van den Bos IC, Hussain SM, Krestin GP et al (2008) Liver imaging at 3.0 T: diffusion-weighted black-blood echo planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study. Radiology 248:264–271

    Article  PubMed  Google Scholar 

  31. Yoon JH, Lee JM, Yu MH et al (2014) Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 39:276–285

    Article  PubMed  Google Scholar 

  32. Brugel M, Holzapfel K, Gan J et al (2008) Characterization of focal liver lesion by ADC measurements using a respiratory-triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  Google Scholar 

  33. Kim SY, Lee SS, Byun JH et al (2010) Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 255:815–823

    Article  PubMed  Google Scholar 

  34. Razek AA, Abdalla A, Omran E et al (2011) Diagnosis and quantification of hepatic fibrosis in children with diffusion weighted MR imaging. Eur J Radiol 78:129–134

    Article  PubMed  Google Scholar 

  35. Peng SS, Jeng YM, Hsu WM et al (2015) Hepatic ADC map as an adjunct to conventional abdominal MRI to evaluate hepatic fibrotic and clinical cirrhotic severity in biliary atresia patients. Eur Radiol 25:2992–3002

    Article  PubMed  Google Scholar 

  36. Lin F, Li Z, Gan Y et al (2014) Relationship between renal apparent diffusion coefficient values and glomerular filtration rate in infants with congenital hydronephrosis. Biosci Trends 8:274–279

    Article  PubMed  Google Scholar 

  37. Park SY, Jung SE, Jeong WK et al (2015) Renal function impairment in liver cirrhosis: preliminary results with diffusion-weighted imaging at 3T. AJR Am J Roentgenol 204:1024–1030

    Article  PubMed  Google Scholar 

  38. Kantarci M, Doganay S, Yalcin A et al (2010) Diagnostic performance of diffusion-weighted MRI in the detection of nonpalpable undescended testes: comparison with conventional MRI and surgical findings. AJR Am J Roentgenol 195:W268–W273

    Article  PubMed  Google Scholar 

  39. Maki D, Watanabe Y, Nagayama M et al (2011) Diffusion-weighted magnetic resonance imaging in the detection of testicular torsion: feasibility study. J Magn Reson Imaging 34:1137–1142

    Article  PubMed  Google Scholar 

  40. Moribata Y, Kido A, Yamaoka T et al (2015) MR imaging findings of ovarian torsion correlate with pathological hemorrhagic infarction. J Obstet Gynaecol Res 41:1433–1439

    Article  PubMed  Google Scholar 

  41. Fujii S, Kaneda S, Kakite S et al (2011) Diffusion-weighted imaging findings of adnexal torsion: initial results. Eur J Radiol 77:330–334

    Article  PubMed  Google Scholar 

  42. Neubauer H, Pabst T, Dick A et al (2013) Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol 43:103–114

    Article  PubMed  Google Scholar 

  43. Ream JM, Dillman JR, Adler J et al (2013) MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol 43:1077–1085

    Article  PubMed  Google Scholar 

  44. Morani AC, Smith EA, Ganeshan D et al (2015) Diffusion-weighted MRI in pediatric inflammatory bowel disease. AJR Am J Roentgenol 204:1269–1277

    Article  PubMed  Google Scholar 

  45. Neubauer H, Platzer I, Mueller VR et al (2012) Diffusion-weighted MRI of abscess formations in children and young adults. World J Pediatr 8:229–234

    Article  PubMed  Google Scholar 

  46. Bozkurt M, Doganay S, Kantarci M et al (2011) Comparison of peritoneal tumor imaging using conventional MR imaging and diffusion-weighted MR imaging with different b values. Eur J Radiol 80:224–228

    Article  PubMed  Google Scholar 

  47. Satoh Y, Ichikawa T, Motosugi U et al (2011) Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol 196:447–453

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind B. Chavhan.

Ethics declarations

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavhan, G.B., Caro-Dominguez, P. Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol 46, 847–857 (2016). https://doi.org/10.1007/s00247-016-3573-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3573-3

Keywords

Navigation